BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 35922624)

  • 1. Prediction of DNA-Binding Transcription Factors in Bacteria and Archaea Genomes.
    Ledesma L; Hernandez-Guerrero R; Perez-Rueda E
    Methods Mol Biol; 2022; 2516():103-112. PubMed ID: 35922624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deciphering the functional diversity of DNA-binding transcription factors in Bacteria and Archaea organisms.
    Flores-Bautista E; Hernandez-Guerrero R; Huerta-Saquero A; Tenorio-Salgado S; Rivera-Gomez N; Romero A; Ibarra JA; Perez-Rueda E
    PLoS One; 2020; 15(8):e0237135. PubMed ID: 32822422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative genomics of DNA-binding transcription factors in archaeal and bacterial organisms.
    Martinez-Liu L; Hernandez-Guerrero R; Rivera-Gomez N; Martinez-Nuñez MA; Escobar-Turriza P; Peeters E; Perez-Rueda E
    PLoS One; 2021; 16(7):e0254025. PubMed ID: 34214112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The repertoire of DNA-binding transcription factors in prokaryotes: functional and evolutionary lessons.
    Perez-Rueda E; Martinez-Nuñez MA
    Sci Prog; 2012; 95(Pt 3):315-29. PubMed ID: 23094327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissecting the protein architecture of DNA-binding transcription factors in bacteria and archaea.
    Rivera-Gómez N; Martínez-Núñez MA; Pastor N; Rodriguez-Vazquez K; Perez-Rueda E
    Microbiology (Reading); 2017 Aug; 163(8):1167-1178. PubMed ID: 28777072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide survey of transcription factors in prokaryotes reveals many bacteria-specific families not found in archaea.
    Minezaki Y; Homma K; Nishikawa K
    DNA Res; 2005; 12(5):269-80. PubMed ID: 16769689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phylogenetic distribution of DNA-binding transcription factors in bacteria and archaea.
    Pérez-Rueda E; Collado-Vides J; Segovia L
    Comput Biol Chem; 2004 Dec; 28(5-6):341-50. PubMed ID: 15556475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and genomic analysis of transcription factors in archaeal genomes exemplifies their functional architecture and evolutionary origin.
    Pérez-Rueda E; Janga SC
    Mol Biol Evol; 2010 Jun; 27(6):1449-59. PubMed ID: 20123795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA-binding proteins and evolution of transcription regulation in the archaea.
    Aravind L; Koonin EV
    Nucleic Acids Res; 1999 Dec; 27(23):4658-70. PubMed ID: 10556324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prokaryotic sigma factors and their transcriptional counterparts in Archaea and Eukarya.
    Abril AG; Rama JLR; Sánchez-Pérez A; Villa TG
    Appl Microbiol Biotechnol; 2020 May; 104(10):4289-4302. PubMed ID: 32232532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Common history at the origin of the position-function correlation in transcriptional regulators in archaea and bacteria.
    Pérez-Rueda E; Collado-Vides J
    J Mol Evol; 2001 Sep; 53(3):172-9. PubMed ID: 11523004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the Abundance of DNA-Binding Transcription Factors in Prokaryotes.
    Sanchez I; Hernandez-Guerrero R; Mendez-Monroy PE; Martinez-Nuñez MA; Ibarra JA; Pérez-Rueda E
    Genes (Basel); 2020 Jan; 11(1):. PubMed ID: 31947717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world.
    Koonin EV; Wolf YI
    Nucleic Acids Res; 2008 Dec; 36(21):6688-719. PubMed ID: 18948295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New insights on gene regulation in archaea.
    Tenorio-Salgado S; Huerta-Saquero A; Perez-Rueda E
    Comput Biol Chem; 2011 Dec; 35(6):341-6. PubMed ID: 22099630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The many faces of the helix-turn-helix domain: transcription regulation and beyond.
    Aravind L; Anantharaman V; Balaji S; Babu MM; Iyer LM
    FEMS Microbiol Rev; 2005 Apr; 29(2):231-62. PubMed ID: 15808743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increments and duplication events of enzymes and transcription factors influence metabolic and regulatory diversity in prokaryotes.
    Martínez-Núñez MA; Poot-Hernandez AC; Rodríguez-Vázquez K; Perez-Rueda E
    PLoS One; 2013; 8(7):e69707. PubMed ID: 23922780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The σ enigma: bacterial σ factors, archaeal TFB and eukaryotic TFIIB are homologs.
    Burton SP; Burton ZF
    Transcription; 2014; 5(4):e967599. PubMed ID: 25483602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Transcriptional Regulator Related to Thiamine Phosphate Synthase Controls Thiamine Metabolism Genes in Archaea.
    Rodionov DA; Leyn SA; Li X; Rodionova IA
    J Bacteriol; 2017 Feb; 199(4):. PubMed ID: 27920295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of archaeal and bacterial genomes: computer analysis of protein sequences predicts novel functions and suggests a chimeric origin for the archaea.
    Koonin EV; Mushegian AR; Galperin MY; Walker DR
    Mol Microbiol; 1997 Aug; 25(4):619-37. PubMed ID: 9379893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phyletic Distribution and Lineage-Specific Domain Architectures of Archaeal Two-Component Signal Transduction Systems.
    Galperin MY; Makarova KS; Wolf YI; Koonin EV
    J Bacteriol; 2018 Apr; 200(7):. PubMed ID: 29263101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.