These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 35922632)

  • 1. Microscale Thermophoresis to Study RNA-RNA Binding Affinity.
    Jordan B; Nickel L; Schmitz RA
    Methods Mol Biol; 2022; 2516():291-303. PubMed ID: 35922632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. sRNA
    Buddeweg A; Sharma K; Urlaub H; Schmitz RA
    Mol Microbiol; 2018 Mar; 107(5):595-609. PubMed ID: 29271512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring RNA-Ligand Interactions with Microscale Thermophoresis.
    Moon MH; Hilimire TA; Sanders AM; Schneekloth JS
    Biochemistry; 2018 Aug; 57(31):4638-4643. PubMed ID: 29327580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microscale Thermophoresis (MST) to Detect the Interaction Between Purified Protein and Small Molecule.
    Huang L; Zhang C
    Methods Mol Biol; 2021; 2213():187-193. PubMed ID: 33270204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studying small molecule-aptamer interactions using MicroScale Thermophoresis (MST).
    Entzian C; Schubert T
    Methods; 2016 Mar; 97():27-34. PubMed ID: 26334574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping the Binding Site of an Aptamer on ATP Using MicroScale Thermophoresis.
    Entzian C; Schubert T
    J Vis Exp; 2017 Jan; (119):. PubMed ID: 28117825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Establishment of a novel microscale thermophoresis ligand-binding assay for characterization of SLC solute carriers using oligopeptide transporter PepT1 (SLC15 family) as a model system.
    Clémençon B; Lüscher BP; Hediger MA
    J Pharmacol Toxicol Methods; 2018; 92():67-76. PubMed ID: 29580877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Absolute Quantification of Noncoding RNA by Microscale Thermophoresis.
    Jacob D; Thüring K; Galliot A; Marchand V; Galvanin A; Ciftci A; Scharmann K; Stock M; Roignant JY; Leidel SA; Motorin Y; Schaffrath R; Klassen R; Helm M
    Angew Chem Int Ed Engl; 2019 Jul; 58(28):9565-9569. PubMed ID: 30892798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aptamer Binding Studies Using MicroScale Thermophoresis.
    Breitsprecher D; Schlinck N; Witte D; Duhr S; Baaske P; Schubert T
    Methods Mol Biol; 2016; 1380():99-111. PubMed ID: 26552819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the acquisition and analysis of microscale thermophoresis data.
    Scheuermann TH; Padrick SB; Gardner KH; Brautigam CA
    Anal Biochem; 2016 Mar; 496():79-93. PubMed ID: 26739938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding Affinity Quantifications of the Bacteriophage Mu DNA Modification Protein Mom Using Microscale Thermophoresis (MST).
    Udupa S; Nagaraja V; Karambelkar S
    Bio Protoc; 2022 Jul; 12(14):. PubMed ID: 35978573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilization-Free Determination of Dissociation Constants Independent of Ligand Size Using MicroScale Thermophoresis.
    Sabrowski W; Stöcklein WFM; Menger MM
    Methods Mol Biol; 2023; 2570():129-140. PubMed ID: 36156779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on Protein-RNA:DNA Hybrid Interactions by Microscale Thermophoresis (MST).
    Li M; Klungland A; Dalhus B
    Methods Mol Biol; 2022; 2528():239-251. PubMed ID: 35704195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N-Terminal Protein Labeling with N-Hydroxysuccinimide Esters and Microscale Thermophoresis Measurements of Protein-Protein Interactions Using Labeled Protein.
    Jiang H; Cole PA
    Curr Protoc; 2021 Jan; 1(1):e14. PubMed ID: 33484499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of lipase-ligand interactions in porcine pancreatic extracts by microscale thermophoresis.
    Al Hamoui Dit Banni G; Nasreddine R; Fayad S; Colas C; Marchal A; Nehmé R
    Anal Bioanal Chem; 2021 Jun; 413(14):3667-3681. PubMed ID: 33797603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MicroScale Thermophoresis: A Rapid and Precise Method to Quantify Protein-Nucleic Acid Interactions in Solution.
    Mueller AM; Breitsprecher D; Duhr S; Baaske P; Schubert T; Längst G
    Methods Mol Biol; 2017; 1654():151-164. PubMed ID: 28986788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studying Interactions between 2'-O-Me-Modified Inhibitors and MicroRNAs Utilizing Microscale Thermophoresis.
    Herkt M; Batkai S; Thum T
    Mol Ther Nucleic Acids; 2019 Dec; 18():259-268. PubMed ID: 31581050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MicroScale Thermophoresis as a Tool to Study Protein-peptide Interactions in the Context of Large Eukaryotic Protein Complexes.
    Plach MG; Grasser K; Schubert T
    Bio Protoc; 2017 Dec; 7(23):e2632. PubMed ID: 34595300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High complexity of Glutamine synthetase regulation in Methanosarcina mazei: Small protein 26 interacts and enhances glutamine synthetase activity.
    Gutt M; Jordan B; Weidenbach K; Gudzuhn M; Kiessling C; Cassidy L; Helbig A; Tholey A; Pyper DJ; Kubatova N; Schwalbe H; Schmitz RA
    FEBS J; 2021 Sep; 288(18):5350-5373. PubMed ID: 33660383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Label-free microscale thermophoresis discriminates sites and affinity of protein-ligand binding.
    Seidel SA; Wienken CJ; Geissler S; Jerabek-Willemsen M; Duhr S; Reiter A; Trauner D; Braun D; Baaske P
    Angew Chem Int Ed Engl; 2012 Oct; 51(42):10656-9. PubMed ID: 23001866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.