BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 35922667)

  • 21. [Advance of research on the role of BCL11A in the occurrence and treatment of β-Thalassemia].
    Lyu A; Chen M; Xu L; Huang H
    Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2024 Apr; 41(4):417-425. PubMed ID: 38565506
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Combination of CRISPR/Cas9 and iPSC Technologies in the Gene Therapy of Human β-thalassemia in Mice.
    Ou Z; Niu X; He W; Chen Y; Song B; Xian Y; Fan D; Tang D; Sun X
    Sci Rep; 2016 Sep; 6():32463. PubMed ID: 27581487
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hurdles to the Adoption of Gene Therapy as a Curative Option for Transfusion-Dependent Thalassemia.
    Thuret I; Ruggeri A; Angelucci E; Chabannon C
    Stem Cells Transl Med; 2022 Apr; 11(4):407-414. PubMed ID: 35267028
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Universal Approach to Correct Various HBB Gene Mutations in Human Stem Cells for Gene Therapy of Beta-Thalassemia and Sickle Cell Disease.
    Cai L; Bai H; Mahairaki V; Gao Y; He C; Wen Y; Jin YC; Wang Y; Pan RL; Qasba A; Ye Z; Cheng L
    Stem Cells Transl Med; 2018 Jan; 7(1):87-97. PubMed ID: 29164808
    [TBL] [Abstract][Full Text] [Related]  

  • 25. miR-30a regulates γ-globin expression in erythoid precursors of intermedia thalassemia through targeting BCL11A.
    Gholampour MA; Asadi M; Naderi M; Azarkeivan A; Soleimani M; Atashi A
    Mol Biol Rep; 2020 May; 47(5):3909-3918. PubMed ID: 32406020
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Advances in genome editing: the technology of choice for precise and efficient β-thalassemia treatment.
    Ali G; Tariq MA; Shahid K; Ahmad FJ; Akram J
    Gene Ther; 2021 Feb; 28(1-2):6-15. PubMed ID: 32355226
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells.
    Dever DP; Bak RO; Reinisch A; Camarena J; Washington G; Nicolas CE; Pavel-Dinu M; Saxena N; Wilkens AB; Mantri S; Uchida N; Hendel A; Narla A; Majeti R; Weinberg KI; Porteus MH
    Nature; 2016 Nov; 539(7629):384-389. PubMed ID: 27820943
    [TBL] [Abstract][Full Text] [Related]  

  • 28. One-step genetic correction of hemoglobin E/beta-thalassemia patient-derived iPSCs by the CRISPR/Cas9 system.
    Wattanapanitch M; Damkham N; Potirat P; Trakarnsanga K; Janan M; U-Pratya Y; Kheolamai P; Klincumhom N; Issaragrisil S
    Stem Cell Res Ther; 2018 Feb; 9(1):46. PubMed ID: 29482624
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gene Therapy and Genome Editing.
    Boulad F; Mansilla-Soto J; Cabriolu A; Rivière I; Sadelain M
    Hematol Oncol Clin North Am; 2018 Apr; 32(2):329-342. PubMed ID: 29458735
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genome editing approaches to β-hemoglobinopathies.
    Brusson M; Miccio A
    Prog Mol Biol Transl Sci; 2021; 182():153-183. PubMed ID: 34175041
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Editing aberrant splice sites efficiently restores β-globin expression in β-thalassemia.
    Xu S; Luk K; Yao Q; Shen AH; Zeng J; Wu Y; Luo HY; Brendel C; Pinello L; Chui DHK; Wolfe SA; Bauer DE
    Blood; 2019 May; 133(21):2255-2262. PubMed ID: 30704988
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CRISPR/Cas9-mediated β-globin gene knockout in rabbits recapitulates human β-thalassemia.
    Yang Y; Kang X; Hu S; Chen B; Xie Y; Song B; Zhang Q; Wu H; Ou Z; Xian Y; Fan Y; Li X; Lai L; Sun X
    J Biol Chem; 2021; 296():100464. PubMed ID: 33639162
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ex vivo culture resting time impacts transplantation outcomes of genome-edited human hematopoietic stem and progenitor cells in xenograft mouse models.
    Demirci S; Khan MBN; Hinojosa G; Le A; Leonard A; Essawi K; Gudmundsdottir B; Liu X; Zeng J; Inam Z; Chu R; Uchida N; Araki D; London E; Butt H; Maitland SA; Bauer DE; Wolfe SA; Larochelle A; Tisdale JF
    Cytotherapy; 2024 Jun; 26(6):641-648. PubMed ID: 38506770
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genetic correction of concurrent α- and β-thalassemia patient-derived pluripotent stem cells by the CRISPR-Cas9 technology.
    Li L; Yi H; Liu Z; Long P; Pan T; Huang Y; Li Y; Li Q; Ma Y
    Stem Cell Res Ther; 2022 Mar; 13(1):102. PubMed ID: 35255977
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Editing an α-globin enhancer in primary human hematopoietic stem cells as a treatment for β-thalassemia.
    Mettananda S; Fisher CA; Hay D; Badat M; Quek L; Clark K; Hublitz P; Downes D; Kerry J; Gosden M; Telenius J; Sloane-Stanley JA; Faustino P; Coelho A; Doondeea J; Usukhbayar B; Sopp P; Sharpe JA; Hughes JR; Vyas P; Gibbons RJ; Higgs DR
    Nat Commun; 2017 Sep; 8(1):424. PubMed ID: 28871148
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Correction of Hemoglobin E/Beta-Thalassemia Patient-Derived iPSCs Using CRISPR/Cas9.
    Wattanapanitch M
    Methods Mol Biol; 2021; 2211():193-211. PubMed ID: 33336279
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CRISPR-mediated gene modification of hematopoietic stem cells with beta-thalassemia IVS-1-110 mutation.
    Gabr H; El Ghamrawy MK; Almaeen AH; Abdelhafiz AS; Hassan AOS; El Sissy MH
    Stem Cell Res Ther; 2020 Sep; 11(1):390. PubMed ID: 32912325
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Disruption of SOX6 gene using CRISPR/Cas9 technology for gamma-globin reactivation: An approach towards gene therapy of β-thalassemia.
    Shariati L; Rohani F; Heidari Hafshejani N; Kouhpayeh S; Boshtam M; Mirian M; Rahimmanesh I; Hejazi Z; Modarres M; Pieper IL; Khanahmad H
    J Cell Biochem; 2018 Nov; 119(11):9357-9363. PubMed ID: 30010219
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Therapeutic adenine base editing of human hematopoietic stem cells.
    Liao J; Chen S; Hsiao S; Jiang Y; Yang Y; Zhang Y; Wang X; Lai Y; Bauer DE; Wu Y
    Nat Commun; 2023 Jan; 14(1):207. PubMed ID: 36639729
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Natural regulatory mutations elevate the fetal globin gene via disruption of BCL11A or ZBTB7A binding.
    Martyn GE; Wienert B; Yang L; Shah M; Norton LJ; Burdach J; Kurita R; Nakamura Y; Pearson RCM; Funnell APW; Quinlan KGR; Crossley M
    Nat Genet; 2018 Apr; 50(4):498-503. PubMed ID: 29610478
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.