These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 35922830)
1. Gardnerella vaginalis alters cervicovaginal epithelial cell function through microbe-specific immune responses. Anton L; Ferguson B; Friedman ES; Gerson KD; Brown AG; Elovitz MA Microbiome; 2022 Aug; 10(1):119. PubMed ID: 35922830 [TBL] [Abstract][Full Text] [Related]
2. Common Cervicovaginal Microbial Supernatants Alter Cervical Epithelial Function: Mechanisms by Which Anton L; Sierra LJ; DeVine A; Barila G; Heiser L; Brown AG; Elovitz MA Front Microbiol; 2018; 9():2181. PubMed ID: 30349508 [TBL] [Abstract][Full Text] [Related]
3. Gardnerella vaginalis induces matrix metalloproteinases in the cervicovaginal epithelium through TLR-2 activation. Gerson KD; Anton L; Ferguson B; Ravel J; Burris HH; Elovitz MA J Reprod Immunol; 2022 Aug; 152():103648. PubMed ID: 35679790 [TBL] [Abstract][Full Text] [Related]
4. Huang X; Lin R; Mao B; Tang X; Zhao J; Zhang Q; Cui S Biomolecules; 2024 Feb; 14(2):. PubMed ID: 38397477 [TBL] [Abstract][Full Text] [Related]
5. Extracellular vesicles from vaginal Gardnerella vaginalis and Mobiluncus mulieris contain distinct proteomic cargo and induce inflammatory pathways. Joseph A; Anton L; Guan Y; Ferguson B; Mirro I; Meng N; France M; Ravel J; Elovitz MA NPJ Biofilms Microbiomes; 2024 Mar; 10(1):28. PubMed ID: 38514622 [TBL] [Abstract][Full Text] [Related]
6. Influence of Lactobacillus crispatus, Lactobacillus iners and Gardnerella vaginalis on bacterial vaginal composition in pregnant women. Witkin SS; Moron AF; Linhares IM; Forney LJ Arch Gynecol Obstet; 2021 Aug; 304(2):395-400. PubMed ID: 33521838 [TBL] [Abstract][Full Text] [Related]
7. Colonization of the cervicovaginal space with Gardnerella vaginalis leads to local inflammation and cervical remodeling in pregnant mice. Sierra LJ; Brown AG; Barilá GO; Anton L; Barnum CE; Shetye SS; Soslowsky LJ; Elovitz MA PLoS One; 2018; 13(1):e0191524. PubMed ID: 29346438 [TBL] [Abstract][Full Text] [Related]
8. Glycogen availability and pH variation in a medium simulating vaginal fluid influence the growth of vaginal Lactobacillus species and Gardnerella vaginalis. Navarro S; Abla H; Delgado B; Colmer-Hamood JA; Ventolini G; Hamood AN BMC Microbiol; 2023 Jul; 23(1):186. PubMed ID: 37442975 [TBL] [Abstract][Full Text] [Related]
9. Lactobacillus crispatus represses vaginolysin expression by BV associated Gardnerella vaginalis and reduces cell cytotoxicity. Castro J; Martins AP; Rodrigues ME; Cerca N Anaerobe; 2018 Apr; 50():60-63. PubMed ID: 29427630 [TBL] [Abstract][Full Text] [Related]
10. Gardnerella vaginalis promotes group B Streptococcus vaginal colonization, enabling ascending uteroplacental infection in pregnant mice. Gilbert NM; Foster LR; Cao B; Yin Y; Mysorekar IU; Lewis AL Am J Obstet Gynecol; 2021 May; 224(5):530.e1-530.e17. PubMed ID: 33248136 [TBL] [Abstract][Full Text] [Related]
11. Evidence for Gardnerella vaginalis uptake and internalization by squamous vaginal epithelial cells: implications for the pathogenesis of bacterial vaginosis. Marrs CN; Knobel SM; Zhu WQ; Sweet SD; Chaudhry AR; Alcendor DJ Microbes Infect; 2012 Jun; 14(6):500-8. PubMed ID: 22227318 [TBL] [Abstract][Full Text] [Related]
12. Log ( Deng T; Shang A; Zheng Y; Zhang L; Sun H; Wang W Bioengineered; 2022 Feb; 13(2):2981-2991. PubMed ID: 35038957 [TBL] [Abstract][Full Text] [Related]
13. Bacterial vaginosis and health-associated bacteria modulate the immunometabolic landscape in 3D model of human cervix. Łaniewski P; Herbst-Kralovetz MM NPJ Biofilms Microbiomes; 2021 Dec; 7(1):88. PubMed ID: 34903740 [TBL] [Abstract][Full Text] [Related]
14. Lactobacillus crispatus-loaded electrospun fibers yield viable and metabolically active bacteria that kill Gardnerella in vitro. Mahmoud MY; Wesley M; Kyser A; Lewis WG; Lewis AL; Steinbach-Rankins JM; Frieboes HB Eur J Pharm Biopharm; 2023 Jun; 187():68-75. PubMed ID: 37086869 [TBL] [Abstract][Full Text] [Related]
15. Exploring the antimicrobial properties of vaginal Amabebe E; Bhatnagar N; Kamble N; Reynolds S; Anumba DO Reprod Fertil; 2022 Jul; 3(3):L6-L8. PubMed ID: 35928673 [TBL] [Abstract][Full Text] [Related]
16. Reciprocal interference between Lactobacillus spp. and Gardnerella vaginalis on initial adherence to epithelial cells. Castro J; Henriques A; Machado A; Henriques M; Jefferson KK; Cerca N Int J Med Sci; 2013; 10(9):1193-8. PubMed ID: 23935396 [TBL] [Abstract][Full Text] [Related]
17. Bacteria in the vaginal microbiome alter the innate immune response and barrier properties of the human vaginal epithelia in a species-specific manner. Doerflinger SY; Throop AL; Herbst-Kralovetz MM J Infect Dis; 2014 Jun; 209(12):1989-99. PubMed ID: 24403560 [TBL] [Abstract][Full Text] [Related]
18. The Female Vaginal Microbiome in Health and Bacterial Vaginosis. Chen X; Lu Y; Chen T; Li R Front Cell Infect Microbiol; 2021; 11():631972. PubMed ID: 33898328 [TBL] [Abstract][Full Text] [Related]
19. The significance of Lactobacillus crispatus and L. vaginalis for vaginal health and the negative effect of recent sex: a cross-sectional descriptive study across groups of African women. Jespers V; van de Wijgert J; Cools P; Verhelst R; Verstraelen H; Delany-Moretlwe S; Mwaura M; Ndayisaba GF; Mandaliya K; Menten J; Hardy L; Crucitti T; BMC Infect Dis; 2015 Mar; 15():115. PubMed ID: 25879811 [TBL] [Abstract][Full Text] [Related]
20. Interpretation of vaginal metagenomic characteristics in different types of vaginitis. Song J; Dong X; Lan Y; Lu Y; Liu X; Kang X; Huang Z; Yue B; Liu Y; Ma W; Zhang L; Yan H; He M; Fan Z; Guo T mSystems; 2024 Mar; 9(3):e0137723. PubMed ID: 38364107 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]