These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
281 related articles for article (PubMed ID: 35922851)
1. Early diagnosis of Alzheimer's disease using machine learning: a multi-diagnostic, generalizable approach. Diogo VS; Ferreira HA; Prata D; Alzheimers Res Ther; 2022 Aug; 14(1):107. PubMed ID: 35922851 [TBL] [Abstract][Full Text] [Related]
2. A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease. Spasov S; Passamonti L; Duggento A; Liò P; Toschi N; Neuroimage; 2019 Apr; 189():276-287. PubMed ID: 30654174 [TBL] [Abstract][Full Text] [Related]
3. Diagnosis and prognosis of Alzheimer's disease using brain morphometry and white matter connectomes. Wang Y; Xu C; Park JH; Lee S; Stern Y; Yoo S; Kim JH; Kim HS; Cha J; Neuroimage Clin; 2019; 23():101859. PubMed ID: 31150957 [TBL] [Abstract][Full Text] [Related]
4. Random forest feature selection, fusion and ensemble strategy: Combining multiple morphological MRI measures to discriminate among healhy elderly, MCI, cMCI and alzheimer's disease patients: From the alzheimer's disease neuroimaging initiative (ADNI) database. Dimitriadis SI; Liparas D; Tsolaki MN; J Neurosci Methods; 2018 May; 302():14-23. PubMed ID: 29269320 [TBL] [Abstract][Full Text] [Related]
5. Differential diagnosis of mild cognitive impairment and Alzheimer's disease using structural MRI cortical thickness, hippocampal shape, hippocampal texture, and volumetry. Sørensen L; Igel C; Pai A; Balas I; Anker C; Lillholm M; Nielsen M; Neuroimage Clin; 2017; 13():470-482. PubMed ID: 28119818 [TBL] [Abstract][Full Text] [Related]
6. Early diagnosis of Alzheimer's disease using combined features from voxel-based morphometry and cortical, subcortical, and hippocampus regions of MRI T1 brain images. Gupta Y; Lee KH; Choi KY; Lee JJ; Kim BC; Kwon GR; ; PLoS One; 2019; 14(10):e0222446. PubMed ID: 31584953 [TBL] [Abstract][Full Text] [Related]
7. Ensemble of random forests One vs. Rest classifiers for MCI and AD prediction using ANOVA cortical and subcortical feature selection and partial least squares. Ramírez J; Górriz JM; Ortiz A; Martínez-Murcia FJ; Segovia F; Salas-Gonzalez D; Castillo-Barnes D; Illán IA; Puntonet CG; J Neurosci Methods; 2018 May; 302():47-57. PubMed ID: 29242123 [TBL] [Abstract][Full Text] [Related]
8. Using machine learning to quantify structural MRI neurodegeneration patterns of Alzheimer's disease into dementia score: Independent validation on 8,834 images from ADNI, AIBL, OASIS, and MIRIAD databases. Popuri K; Ma D; Wang L; Beg MF Hum Brain Mapp; 2020 Oct; 41(14):4127-4147. PubMed ID: 32614505 [TBL] [Abstract][Full Text] [Related]
9. Cross-cohort generalizability of deep and conventional machine learning for MRI-based diagnosis and prediction of Alzheimer's disease. Bron EE; Klein S; Papma JM; Jiskoot LC; Venkatraghavan V; Linders J; Aalten P; De Deyn PP; Biessels GJ; Claassen JAHR; Middelkoop HAM; Smits M; Niessen WJ; van Swieten JC; van der Flier WM; Ramakers IHGB; van der Lugt A; ; Neuroimage Clin; 2021; 31():102712. PubMed ID: 34118592 [TBL] [Abstract][Full Text] [Related]
11. Comparing different algorithms for the course of Alzheimer's disease using machine learning. Tang X; Liu J Ann Palliat Med; 2021 Sep; 10(9):9715-9724. PubMed ID: 34628897 [TBL] [Abstract][Full Text] [Related]
12. Application of advanced machine learning methods on resting-state fMRI network for identification of mild cognitive impairment and Alzheimer's disease. Khazaee A; Ebrahimzadeh A; Babajani-Feremi A Brain Imaging Behav; 2016 Sep; 10(3):799-817. PubMed ID: 26363784 [TBL] [Abstract][Full Text] [Related]
13. Cortical graph neural network for AD and MCI diagnosis and transfer learning across populations. Wee CY; Liu C; Lee A; Poh JS; Ji H; Qiu A; Neuroimage Clin; 2019; 23():101929. PubMed ID: 31491832 [TBL] [Abstract][Full Text] [Related]
14. Random Forest ensembles for detection and prediction of Alzheimer's disease with a good between-cohort robustness. Lebedev AV; Westman E; Van Westen GJ; Kramberger MG; Lundervold A; Aarsland D; Soininen H; Kłoszewska I; Mecocci P; Tsolaki M; Vellas B; Lovestone S; Simmons A; Neuroimage Clin; 2014; 6():115-25. PubMed ID: 25379423 [TBL] [Abstract][Full Text] [Related]
15. Modelling prognostic trajectories of cognitive decline due to Alzheimer's disease. Giorgio J; Landau SM; Jagust WJ; Tino P; Kourtzi Z; Neuroimage Clin; 2020; 26():102199. PubMed ID: 32106025 [TBL] [Abstract][Full Text] [Related]
16. A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer's disease. Liu M; Li F; Yan H; Wang K; Ma Y; ; Shen L; Xu M Neuroimage; 2020 Mar; 208():116459. PubMed ID: 31837471 [TBL] [Abstract][Full Text] [Related]
17. Automated classification of Alzheimer's disease and mild cognitive impairment using a single MRI and deep neural networks. Basaia S; Agosta F; Wagner L; Canu E; Magnani G; Santangelo R; Filippi M; Neuroimage Clin; 2019; 21():101645. PubMed ID: 30584016 [TBL] [Abstract][Full Text] [Related]
18. An ensemble learning system for a 4-way classification of Alzheimer's disease and mild cognitive impairment. Yao D; Calhoun VD; Fu Z; Du Y; Sui J J Neurosci Methods; 2018 May; 302():75-81. PubMed ID: 29578038 [TBL] [Abstract][Full Text] [Related]
19. A novel joint HCPMMP method for automatically classifying Alzheimer's and different stage MCI patients. Sheng J; Wang B; Zhang Q; Liu Q; Ma Y; Liu W; Shao M; Chen B Behav Brain Res; 2019 Jun; 365():210-221. PubMed ID: 30836158 [TBL] [Abstract][Full Text] [Related]
20. Automated MRI-Based Deep Learning Model for Detection of Alzheimer's Disease Process. Feng W; Halm-Lutterodt NV; Tang H; Mecum A; Mesregah MK; Ma Y; Li H; Zhang F; Wu Z; Yao E; Guo X Int J Neural Syst; 2020 Jun; 30(6):2050032. PubMed ID: 32498641 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]