BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 35923142)

  • 1. TGFβ signaling activation correlates with immune-inflamed tumor microenvironment across human cancers and predicts response to immunotherapy.
    Xia J; Zhang Q; Luan J; Min P; Zhang H; Chen G; Ji C; Song N
    Cell Cycle; 2023 Jan; 22(1):57-72. PubMed ID: 35923142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lack of TGFβ signaling competency predicts immune poor cancer conversion to immune rich and response to checkpoint blockade.
    Moore J; Gkantalis J; Guix I; Chou W; Yuen K; Lazar AA; Spitzer M; Combes AJ; Barcellos-Hoff MH
    bioRxiv; 2024 May; ():. PubMed ID: 38496519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overcoming TGFβ-mediated immune evasion in cancer.
    Tauriello DVF; Sancho E; Batlle E
    Nat Rev Cancer; 2022 Jan; 22(1):25-44. PubMed ID: 34671117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinical development of therapies targeting TGFβ: current knowledge and future perspectives.
    Ciardiello D; Elez E; Tabernero J; Seoane J
    Ann Oncol; 2020 Oct; 31(10):1336-1349. PubMed ID: 32710930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TGFβ and the Tumor Microenvironment in Colorectal Cancer.
    Waldner MJ; Neurath MF
    Cells; 2023 Apr; 12(8):. PubMed ID: 37190048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparing syngeneic and autochthonous models of breast cancer to identify tumor immune components that correlate with response to immunotherapy in breast cancer.
    Lal JC; Townsend MG; Mehta AK; Oliwa M; Miller E; Sotayo A; Cheney E; Mittendorf EA; Letai A; Guerriero JL
    Breast Cancer Res; 2021 Aug; 23(1):83. PubMed ID: 34353349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prospects for personalized combination immunotherapy for solid tumors based on adoptive cell therapies and immune checkpoint blockade therapies.
    Kato D; Yaguchi T; Iwata T; Morii K; Nakagawa T; Nishimura R; Kawakami Y
    Nihon Rinsho Meneki Gakkai Kaishi; 2017; 40(1):68-77. PubMed ID: 28539557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TGFβ Signaling in Photoaging and UV-Induced Skin Cancer.
    Ke Y; Wang XJ
    J Invest Dermatol; 2021 Apr; 141(4S):1104-1110. PubMed ID: 33358021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The radiobiology of TGFβ.
    Barcellos-Hoff MH
    Semin Cancer Biol; 2022 Nov; 86(Pt 3):857-867. PubMed ID: 35122974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TGFβ-derived immune modulatory vaccine: targeting the immunosuppressive and fibrotic tumor microenvironment in a murine model of pancreatic cancer.
    Perez-Penco M; Weis-Banke SE; Schina A; Siersbæk M; Hübbe ML; Jørgensen MA; Lecoq I; Lara de la Torre L; Bendtsen SK; Martinenaite E; Holmström MO; Madsen DH; Donia M; Ødum N; Grøntved L; Andersen MH
    J Immunother Cancer; 2022 Dec; 10(12):. PubMed ID: 36600556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis.
    Tauriello DVF; Palomo-Ponce S; Stork D; Berenguer-Llergo A; Badia-Ramentol J; Iglesias M; Sevillano M; Ibiza S; Cañellas A; Hernando-Momblona X; Byrom D; Matarin JA; Calon A; Rivas EI; Nebreda AR; Riera A; Attolini CS; Batlle E
    Nature; 2018 Feb; 554(7693):538-543. PubMed ID: 29443964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TGFβ Blockade Augments PD-1 Inhibition to Promote T-Cell-Mediated Regression of Pancreatic Cancer.
    Principe DR; Park A; Dorman MJ; Kumar S; Viswakarma N; Rubin J; Torres C; McKinney R; Munshi HG; Grippo PJ; Rana A
    Mol Cancer Ther; 2019 Mar; 18(3):613-620. PubMed ID: 30587556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of regulatory T cell infiltration in tumors: implications for innovative immune precision therapies.
    Nishikawa H; Koyama S
    J Immunother Cancer; 2021 Jul; 9(7):. PubMed ID: 34330764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The difficulty in translating the preclinical success of combined TGFβ and immune checkpoint inhibition to clinical trial.
    Metropulos AE; Munshi HG; Principe DR
    EBioMedicine; 2022 Dec; 86():104380. PubMed ID: 36455409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pan-cancer landscape of T-cell exhaustion heterogeneity within the tumor microenvironment revealed a progressive roadmap of hierarchical dysfunction associated with prognosis and therapeutic efficacy.
    Zhang Z; Chen L; Chen H; Zhao J; Li K; Sun J; Zhou M
    EBioMedicine; 2022 Sep; 83():104207. PubMed ID: 35961204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TGFβ Antagonizes IFNγ-Mediated Adaptive Immune Evasion via Activation of the AKT-Smad3-SHP1 Axis in Lung Adenocarcinoma.
    Ye F; Cai Z; Wang B; Zeng C; Xi Y; Hu S; Qu R; Yuan Z; Yue J; Tian Y; Wang X; Fu X; Li L
    Cancer Res; 2023 Jul; 83(13):2262-2277. PubMed ID: 37145144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TGF-β: A novel predictor and target for anti-PD-1/PD-L1 therapy.
    Yi M; Li T; Niu M; Wu Y; Zhao Z; Wu K
    Front Immunol; 2022; 13():1061394. PubMed ID: 36601124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TGFβ: Signaling Blockade for Cancer Immunotherapy.
    Chen SY; Mamai O; Akhurst RJ
    Annu Rev Cancer Biol; 2022; 6(1):123-146. PubMed ID: 36382146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Tumor Microenvironment in the Response to Immune Checkpoint Blockade Therapies.
    Petitprez F; Meylan M; de Reyniès A; Sautès-Fridman C; Fridman WH
    Front Immunol; 2020; 11():784. PubMed ID: 32457745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cancer Immunotherapy Targets Based on Understanding the T Cell-Inflamed Versus Non-T Cell-Inflamed Tumor Microenvironment.
    Gajewski TF; Corrales L; Williams J; Horton B; Sivan A; Spranger S
    Adv Exp Med Biol; 2017; 1036():19-31. PubMed ID: 29275462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.