BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 35923701)

  • 1. Optimal Sparsity Selection Based on an Information Criterion for Accurate Gene Regulatory Network Inference.
    Seçilmiş D; Nelander S; Sonnhammer ELL
    Front Genet; 2022; 13():855770. PubMed ID: 35923701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A generalized framework for controlling FDR in gene regulatory network inference.
    Morgan D; Tjärnberg A; Nordling TEM; Sonnhammer ELL
    Bioinformatics; 2019 Mar; 35(6):1026-1032. PubMed ID: 30169550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inference of gene networks from gene expression time series using recurrent neural networks and sparse MAP estimation.
    Chen CK
    J Bioinform Comput Biol; 2018 Aug; 16(4):1850009. PubMed ID: 30051742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inferring the experimental design for accurate gene regulatory network inference.
    Seçilmiş D; Hillerton T; Nelander S; Sonnhammer ELL
    Bioinformatics; 2021 Oct; 37(20):3553-3559. PubMed ID: 33978748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast and accurate gene regulatory network inference by normalized least squares regression.
    Hillerton T; Seçilmiş D; Nelander S; Sonnhammer ELL
    Bioinformatics; 2022 Apr; 38(8):2263-2268. PubMed ID: 35176145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust discovery of gene regulatory networks from single-cell gene expression data by Causal Inference Using Composition of Transactions.
    Shojaee A; Huang SC
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37897702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal design of gene knockout experiments for gene regulatory network inference.
    Ud-Dean SM; Gunawan R
    Bioinformatics; 2016 Mar; 32(6):875-83. PubMed ID: 26568633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Gene Regulatory Networks Using Variational Bayesian Inference in the Presence of Missing Data.
    Liu Q; Li J; Dong M; Liu M; Chai Y
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):399-409. PubMed ID: 35061589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hybrid framework for reverse engineering of robust Gene Regulatory Networks.
    Jafari M; Ghavami B; Sattari V
    Artif Intell Med; 2017 Jun; 79():15-27. PubMed ID: 28602483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PMF-GRN: a variational inference approach to single-cell gene regulatory network inference using probabilistic matrix factorization.
    Skok Gibbs C; Mahmood O; Bonneau R; Cho K
    Genome Biol; 2024 Apr; 25(1):88. PubMed ID: 38589899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MetaSEM: Gene Regulatory Network Inference from Single-Cell RNA Data by Meta-Learning.
    Zhang Y; Wang M; Wang Z; Liu Y; Xiong S; Zou Q
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SIN-KNO: A method of gene regulatory network inference using single-cell transcription and gene knockout data.
    Wang H; Lian Y; Li C; Ma Y; Yan Z; Dong C
    J Bioinform Comput Biol; 2019 Dec; 17(6):1950035. PubMed ID: 32019417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene Regulatory Network-Classifier: Gene Regulatory Network-Based Classifier and Its Applications to Gastric Cancer Drug (5-Fluorouracil) Marker Identification.
    Park H; Imoto S; Miyano S
    J Comput Biol; 2023 Feb; 30(2):223-243. PubMed ID: 36450117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time lagged information theoretic approaches to the reverse engineering of gene regulatory networks.
    Chaitankar V; Ghosh P; Perkins EJ; Gong P; Zhang C
    BMC Bioinformatics; 2010 Oct; 11 Suppl 6(Suppl 6):S19. PubMed ID: 20946602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Periodic synchronization of isolated network elements facilitates simulating and inferring gene regulatory networks including stochastic molecular kinetics.
    Hettich J; Gebhardt JCM
    BMC Bioinformatics; 2022 Jan; 23(1):13. PubMed ID: 34986805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal sparsity criteria for network inference.
    Tjärnberg A; Nordling TE; Studham M; Sonnhammer EL
    J Comput Biol; 2013 May; 20(5):398-408. PubMed ID: 23641867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TRaCE+: Ensemble inference of gene regulatory networks from transcriptional expression profiles of gene knock-out experiments.
    Ud-Dean SM; Heise S; Klamt S; Gunawan R
    BMC Bioinformatics; 2016 Jun; 17():252. PubMed ID: 27342648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bayesian differential analysis of gene regulatory networks exploiting genetic perturbations.
    Li Y; Liu D; Li T; Zhu Y
    BMC Bioinformatics; 2020 Jan; 21(1):12. PubMed ID: 31918656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly sensitive inference of time-delayed gene regulation by network deconvolution.
    Chen H; Mundra PA; Zhao LN; Lin F; Zheng J
    BMC Syst Biol; 2014; 8 Suppl 4(Suppl 4):S6. PubMed ID: 25521243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.