These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Effect of temperature on the duration of sensitive period and on the number of photoperiodic cycles required for the induction of reproductive diapause in Drosophila montana. Salminen TS; Hoikkala A J Insect Physiol; 2013 Apr; 59(4):450-7. PubMed ID: 23428942 [TBL] [Abstract][Full Text] [Related]
3. Northern Drosophila montana flies show variation both within and between cline populations in the critical day length evoking reproductive diapause. Lankinen P; Tyukmaeva VI; Hoikkala A J Insect Physiol; 2013 Aug; 59(8):745-51. PubMed ID: 23702203 [TBL] [Abstract][Full Text] [Related]
4. Nanda-Hamner Curves Show Huge Latitudinal Variation but No Circadian Components in Lankinen P; Kastally C; Hoikkala A J Biol Rhythms; 2021 Jun; 36(3):226-238. PubMed ID: 33745359 [TBL] [Abstract][Full Text] [Related]
5. Clinal variation in the temperature and photoperiodic control of reproductive diapause in Drosophila montana females. Lankinen P; Kastally C; Hoikkala A J Insect Physiol; 2023 Nov; 150():104556. PubMed ID: 37598869 [TBL] [Abstract][Full Text] [Related]
6. Changes in gene expression linked with adult reproductive diapause in a northern malt fly species: a candidate gene microarray study. Kankare M; Salminen T; Laiho A; Vesala L; Hoikkala A BMC Ecol; 2010 Feb; 10():3. PubMed ID: 20122138 [TBL] [Abstract][Full Text] [Related]
7. Involvement of circadian oscillation(s) in the photoperiodic time measurement and the induction of reproductive diapause in a northern Drosophila species. Kauranen H; Tyukmaeva V; Hoikkala A J Insect Physiol; 2013 Jul; 59(7):662-6. PubMed ID: 23665332 [TBL] [Abstract][Full Text] [Related]
8. Selection for reproduction under short photoperiods changes diapause-associated traits and induces widespread genomic divergence. Kauranen H; Kinnunen J; Hiillos AL; Lankinen P; Hopkins D; Wiberg RAW; Ritchie MG; Hoikkala A J Exp Biol; 2019 Oct; 222(Pt 20):. PubMed ID: 31511345 [TBL] [Abstract][Full Text] [Related]
9. Effects of photoperiodically induced reproductive diapause and cold hardening on the cold tolerance of Drosophila montana. Vesala L; Hoikkala A J Insect Physiol; 2011 Jan; 57(1):46-51. PubMed ID: 20932841 [TBL] [Abstract][Full Text] [Related]
10. Seasonal gene expression kinetics between diapause phases in Drosophila virilis group species and overwintering differences between diapausing and non-diapausing females. Salminen TS; Vesala L; Laiho A; Merisalo M; Hoikkala A; Kankare M Sci Rep; 2015 Jun; 5():11197. PubMed ID: 26063442 [TBL] [Abstract][Full Text] [Related]
11. Photoperiodic regulation of life-history traits before and after eclosion: egg-to-adult development time, juvenile body mass and reproductive diapause in Drosophila montana. Salminen TS; Vesala L; Hoikkala A J Insect Physiol; 2012 Dec; 58(12):1541-7. PubMed ID: 23026647 [TBL] [Abstract][Full Text] [Related]
12. Circadian clock of Drosophila montana is adapted to high variation in summer day lengths and temperatures prevailing at high latitudes. Kauranen H; Ala-Honkola O; Kankare M; Hoikkala A J Insect Physiol; 2016 Jun; 89():9-18. PubMed ID: 26993661 [TBL] [Abstract][Full Text] [Related]
13. Transcriptional Differences between Diapausing and Non-Diapausing D. montana Females Reared under the Same Photoperiod and Temperature. Kankare M; Parker DJ; Merisalo M; Salminen TS; Hoikkala A PLoS One; 2016; 11(8):e0161852. PubMed ID: 27571415 [TBL] [Abstract][Full Text] [Related]
14. Distinct Physiological Mechanisms Induce Latitudinal and Sexual Differences in the Photoperiodic Induction of Diapause in a Fly. Yamaguchi K; Goto SG J Biol Rhythms; 2019 Jun; 34(3):293-306. PubMed ID: 30966851 [TBL] [Abstract][Full Text] [Related]
15. Adaptation to a seasonally varying environment: a strong latitudinal cline in reproductive diapause combined with high gene flow in Drosophila montana. Tyukmaeva VI; Salminen TS; Kankare M; Knott KE; Hoikkala A Ecol Evol; 2011 Oct; 1(2):160-8. PubMed ID: 22393492 [TBL] [Abstract][Full Text] [Related]
16. Photoperiodic regulation of cold tolerance and expression levels of regucalcin gene in Drosophila montana. Vesala L; Salminen TS; Kankare M; Hoikkala A J Insect Physiol; 2012 May; 58(5):704-9. PubMed ID: 22360999 [TBL] [Abstract][Full Text] [Related]
17. Direct and correlated responses to bi-directional selection on pre-adult development time in Drosophila montana. Kauranen H; Kinnunen J; Hopkins D; Hoikkala A J Insect Physiol; 2019 Jul; 116():77-89. PubMed ID: 31004669 [TBL] [Abstract][Full Text] [Related]
18. Localization of quantitative trait loci for diapause and other photoperiodically regulated life history traits important in adaptation to seasonally varying environments. Tyukmaeva VI; Veltsos P; Slate J; Gregson E; Kauranen H; Kankare M; Ritchie MG; Butlin RK; Hoikkala A Mol Ecol; 2015 Jun; 24(11):2809-19. PubMed ID: 25877951 [TBL] [Abstract][Full Text] [Related]
19. Independence of genetic geographical variation between photoperiodic diapause, circadian eclosion rhythm, and Thr-Gly repeat region of the period gene in Drosophila littoralis. Lankinen P; Forsman P J Biol Rhythms; 2006 Feb; 21(1):3-12. PubMed ID: 16461980 [TBL] [Abstract][Full Text] [Related]
20. Diapause affects cuticular hydrocarbon composition and mating behavior of both sexes in Drosophila montana. Ala-Honkola O; Kauranen H; Tyukmaeva V; Boetzl FA; Hoikkala A; Schmitt T Insect Sci; 2020 Apr; 27(2):304-316. PubMed ID: 30176124 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]