These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 35924321)

  • 1. GCN5L1 impairs diastolic function in mice exposed to a high fat diet by restricting cardiac pyruvate oxidation.
    Thapa D; Bugga P; Mushala BAS; Manning JR; Stoner MW; McMahon B; Zeng X; Cantrell PS; Yates N; Xie B; Edmunds LR; Jurczak MJ; Scott I
    Physiol Rep; 2022 Aug; 10(15):e15415. PubMed ID: 35924321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acetylation of mitochondrial proteins by GCN5L1 promotes enhanced fatty acid oxidation in the heart.
    Thapa D; Zhang M; Manning JR; Guimarães DA; Stoner MW; O'Doherty RM; Shiva S; Scott I
    Am J Physiol Heart Circ Physiol; 2017 Aug; 313(2):H265-H274. PubMed ID: 28526709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cardiomyocyte-specific deletion of GCN5L1 in mice restricts mitochondrial protein hyperacetylation in response to a high fat diet.
    Thapa D; Manning JR; Stoner MW; Zhang M; Xie B; Scott I
    Sci Rep; 2020 Jun; 10(1):10665. PubMed ID: 32606301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The protein acetylase GCN5L1 modulates hepatic fatty acid oxidation activity via acetylation of the mitochondrial β-oxidation enzyme HADHA.
    Thapa D; Wu K; Stoner MW; Xie B; Zhang M; Manning JR; Lu Z; Li JH; Chen Y; Gucek M; Playford MP; Mehta NN; Harmon D; O'Doherty RM; Jurczak MJ; Sack MN; Scott I
    J Biol Chem; 2018 Nov; 293(46):17676-17684. PubMed ID: 30323061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acetylation and succinylation contribute to maturational alterations in energy metabolism in the newborn heart.
    Fukushima A; Alrob OA; Zhang L; Wagg CS; Altamimi T; Rawat S; Rebeyka IM; Kantor PF; Lopaschuk GD
    Am J Physiol Heart Circ Physiol; 2016 Aug; 311(2):H347-63. PubMed ID: 27261364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Obesity-induced lysine acetylation increases cardiac fatty acid oxidation and impairs insulin signalling.
    Alrob OA; Sankaralingam S; Ma C; Wagg CS; Fillmore N; Jaswal JS; Sack MN; Lehner R; Gupta MP; Michelakis ED; Padwal RS; Johnstone DE; Sharma AM; Lopaschuk GD
    Cardiovasc Res; 2014 Sep; 103(4):485-97. PubMed ID: 24966184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extreme Acetylation of the Cardiac Mitochondrial Proteome Does Not Promote Heart Failure.
    Davidson MT; Grimsrud PA; Lai L; Draper JA; Fisher-Wellman KH; Narowski TM; Abraham DM; Koves TR; Kelly DP; Muoio DM
    Circ Res; 2020 Sep; 127(8):1094-1108. PubMed ID: 32660330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a mouse model of obesity-related fibrotic cardiomyopathy that recapitulates features of human heart failure with preserved ejection fraction.
    Alex L; Russo I; Holoborodko V; Frangogiannis NG
    Am J Physiol Heart Circ Physiol; 2018 Oct; 315(4):H934-H949. PubMed ID: 30004258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Progressive mitochondrial protein lysine acetylation and heart failure in a model of Friedreich's ataxia cardiomyopathy.
    Stram AR; Wagner GR; Fogler BD; Pride PM; Hirschey MD; Payne RM
    PLoS One; 2017; 12(5):e0178354. PubMed ID: 28542596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardiac Ryanodine Receptor (Ryr2)-mediated Calcium Signals Specifically Promote Glucose Oxidation via Pyruvate Dehydrogenase.
    Bround MJ; Wambolt R; Cen H; Asghari P; Albu RF; Han J; McAfee D; Pourrier M; Scott NE; Bohunek L; Kulpa JE; Chen SR; Fedida D; Brownsey RW; Borchers CH; Foster LJ; Mayor T; Moore ED; Allard MF; Johnson JD
    J Biol Chem; 2016 Nov; 291(45):23490-23505. PubMed ID: 27621312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MicroRNA-195 Regulates Metabolism in Failing Myocardium Via Alterations in Sirtuin 3 Expression and Mitochondrial Protein Acetylation.
    Zhang X; Ji R; Liao X; Castillero E; Kennel PJ; Brunjes DL; Franz M; Möbius-Winkler S; Drosatos K; George I; Chen EI; Colombo PC; Schulze PC
    Circulation; 2018 May; 137(19):2052-2067. PubMed ID: 29330215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cardiac-Specific Deletion of Pyruvate Dehydrogenase Impairs Glucose Oxidation Rates and Induces Diastolic Dysfunction.
    Gopal K; Almutairi M; Al Batran R; Eaton F; Gandhi M; Ussher JR
    Front Cardiovasc Med; 2018; 5():17. PubMed ID: 29560354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased fatty acid oxidation enzyme activity in the hearts of mice fed a high fat diet does not correlate with improved cardiac contractile function.
    Thapa D; Manning JR; Mushala BAS; Stoner MW; Zhang M; Scott I
    Curr Res Physiol; 2020 Dec; 3():44-49. PubMed ID: 34746819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coenzyme A-mediated degradation of pyruvate dehydrogenase kinase 4 promotes cardiac metabolic flexibility after high-fat feeding in mice.
    Schafer C; Young ZT; Makarewich CA; Elnwasany A; Kinter C; Kinter M; Szweda LI
    J Biol Chem; 2018 May; 293(18):6915-6924. PubMed ID: 29540486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ANG II causes insulin resistance and induces cardiac metabolic switch and inefficiency: a critical role of PDK4.
    Mori J; Alrob OA; Wagg CS; Harris RA; Lopaschuk GD; Oudit GY
    Am J Physiol Heart Circ Physiol; 2013 Apr; 304(8):H1103-13. PubMed ID: 23396452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Type 1 diabetic cardiomyopathy in the Akita (Ins2WT/C96Y) mouse model is characterized by lipotoxicity and diastolic dysfunction with preserved systolic function.
    Basu R; Oudit GY; Wang X; Zhang L; Ussher JR; Lopaschuk GD; Kassiri Z
    Am J Physiol Heart Circ Physiol; 2009 Dec; 297(6):H2096-108. PubMed ID: 19801494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased Capillary Permeability in Heart Induces Diastolic Dysfunction Independently of Inflammation, Fibrosis, or Cardiomyocyte Dysfunction.
    Abelanet A; Camoin M; Rubin S; Bougaran P; Delobel V; Pernot M; Forfar I; Guilbeau-Frugier C; Galès C; Bats ML; Renault MA; Dufourcq P; Couffinhal T; Duplàa C
    Arterioscler Thromb Vasc Biol; 2022 Jun; 42(6):745-763. PubMed ID: 35510550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Agonist-induced hypertrophy and diastolic dysfunction are associated with selective reduction in glucose oxidation: a metabolic contribution to heart failure with normal ejection fraction.
    Mori J; Basu R; McLean BA; Das SK; Zhang L; Patel VB; Wagg CS; Kassiri Z; Lopaschuk GD; Oudit GY
    Circ Heart Fail; 2012 Jul; 5(4):493-503. PubMed ID: 22705769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GPER-dependent estrogen signaling increases cardiac GCN5L1 expression.
    Manning JR; Thapa D; Zhang M; Stoner MW; Sembrat JC; Rojas M; Scott I
    Am J Physiol Heart Circ Physiol; 2022 May; 322(5):H762-H768. PubMed ID: 35245133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adropin regulates pyruvate dehydrogenase in cardiac cells via a novel GPCR-MAPK-PDK4 signaling pathway.
    Thapa D; Stoner MW; Zhang M; Xie B; Manning JR; Guimaraes D; Shiva S; Jurczak MJ; Scott I
    Redox Biol; 2018 Sep; 18():25-32. PubMed ID: 29909017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.