These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 35924321)

  • 21. Disruption of Acetyl-Lysine Turnover in Muscle Mitochondria Promotes Insulin Resistance and Redox Stress without Overt Respiratory Dysfunction.
    Williams AS; Koves TR; Davidson MT; Crown SB; Fisher-Wellman KH; Torres MJ; Draper JA; Narowski TM; Slentz DH; Lantier L; Wasserman DH; Grimsrud PA; Muoio DM
    Cell Metab; 2020 Jan; 31(1):131-147.e11. PubMed ID: 31813822
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of Pyruvate Dehydrogenase Kinase 4 in the Heart through Degradation by the Lon Protease in Response to Mitochondrial Substrate Availability.
    Crewe C; Schafer C; Lee I; Kinter M; Szweda LI
    J Biol Chem; 2017 Jan; 292(1):305-312. PubMed ID: 27856638
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Targeting Mitochondria-Inflammation Circuit by β-Hydroxybutyrate Mitigates HFpEF.
    Deng Y; Xie M; Li Q; Xu X; Ou W; Zhang Y; Xiao H; Yu H; Zheng Y; Liang Y; Jiang C; Chen G; Du D; Zheng W; Wang S; Gong M; Chen Y; Tian R; Li T
    Circ Res; 2021 Jan; 128(2):232-245. PubMed ID: 33176578
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydrogen sulfide alleviates heart failure with preserved ejection fraction in mice by targeting mitochondrial abnormalities via PGC-1α.
    Huang S; Chen X; Pan J; Zhang H; Ke J; Gao L; Yu Chang AC; Zhang J; Zhang H
    Nitric Oxide; 2023 Jul; 136-137():12-23. PubMed ID: 37182786
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pyruvate dehydrogenase influences postischemic heart function.
    Lewandowski ED; White LT
    Circulation; 1995 Apr; 91(7):2071-9. PubMed ID: 7895366
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional resilience of C57BL/6J mouse heart to dietary fat overload.
    Tadinada SM; Weatherford ET; Collins GV; Bhardwaj G; Cochran J; Kutschke W; Zimmerman K; Bosko A; O'Neill BT; Weiss RM; Abel ED
    Am J Physiol Heart Circ Physiol; 2021 Nov; 321(5):H850-H864. PubMed ID: 34477461
    [TBL] [Abstract][Full Text] [Related]  

  • 27. GCN5L1 controls renal lipotoxicity through regulating acetylation of fatty acid oxidation enzymes.
    Lv T; Hu Y; Ma Y; Zhen J; Xin W; Wan Q
    J Physiol Biochem; 2019 Nov; 75(4):597-606. PubMed ID: 31760589
    [TBL] [Abstract][Full Text] [Related]  

  • 28. FoxO1 inhibition alleviates type 2 diabetes-related diastolic dysfunction by increasing myocardial pyruvate dehydrogenase activity.
    Gopal K; Al Batran R; Altamimi TR; Greenwell AA; Saed CT; Tabatabaei Dakhili SA; Dimaano MTE; Zhang Y; Eaton F; Sutendra G; Ussher JR
    Cell Rep; 2021 Apr; 35(1):108935. PubMed ID: 33826891
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of a robust mouse model of heart failure with preserved ejection fraction.
    Matsiukevich D; Kovacs A; Li T; Kokkonen-Simon K; Matkovich SJ; Oladipupo SS; Ornitz DM
    Am J Physiol Heart Circ Physiol; 2023 Aug; 325(2):H203-H231. PubMed ID: 37204871
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of Mitochondrial Oxidative Stress in Glucose Tolerance, Insulin Resistance, and Cardiac Diastolic Dysfunction.
    Jeong EM; Chung J; Liu H; Go Y; Gladstein S; Farzaneh-Far A; Lewandowski ED; Dudley SC
    J Am Heart Assoc; 2016 May; 5(5):. PubMed ID: 27151515
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acetylation and phosphorylation changes to cardiac proteins in experimental HFpEF due to metabolic risk reveal targets for treatment.
    Koser F; Hobbach AJ; Abdellatif M; Herbst V; Türk C; Reinecke H; Krüger M; Sedej S; Linke WA
    Life Sci; 2022 Nov; 309():120998. PubMed ID: 36179815
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pyruvate dehydrogenase activation precedes the down-regulation of fatty acid oxidation in monocrotaline-induced myocardial toxicity in mice.
    Nakai G; Shimura D; Uesugi K; Kajimura I; Jiao Q; Kusakari Y; Soga T; Goda N; Minamisawa S
    Heart Vessels; 2019 Mar; 34(3):545-555. PubMed ID: 30386918
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mitochondrial protein hyperacetylation underpins heart failure with preserved ejection fraction in mice.
    Liu X; Zhang Y; Deng Y; Yang L; Ou W; Xie M; Ding L; Jiang C; Yu H; Li Q; Li T
    J Mol Cell Cardiol; 2022 Apr; 165():76-85. PubMed ID: 34998831
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Induction of Posttranslational Modifications of Mitochondrial Proteins by ATP Contributes to Negative Regulation of Mitochondrial Function.
    Zhang Y; Zhao Z; Ke B; Wan L; Wang H; Ye J
    PLoS One; 2016; 11(3):e0150454. PubMed ID: 26930489
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protein acetylation in skeletal muscle mitochondria is involved in impaired fatty acid oxidation and exercise intolerance in heart failure.
    Tsuda M; Fukushima A; Matsumoto J; Takada S; Kakutani N; Nambu H; Yamanashi K; Furihata T; Yokota T; Okita K; Kinugawa S; Anzai T
    J Cachexia Sarcopenia Muscle; 2018 Oct; 9(5):844-859. PubMed ID: 30168279
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reduced acetylation of TFAM promotes bioenergetic dysfunction in the failing heart.
    Zhang M; Feng N; Peng Z; Thapa D; Stoner MW; Manning JR; McTiernan CF; Yang X; Jurczak MJ; Guimaraes D; Rao K; Shiva S; Kaufman BA; Sack MN; Scott I
    iScience; 2023 Jun; 26(6):106942. PubMed ID: 37305705
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mitochondrial Reactive Oxygen Species Mediate Cardiac Structural, Functional, and Mitochondrial Consequences of Diet-Induced Metabolic Heart Disease.
    Sverdlov AL; Elezaby A; Qin F; Behring JB; Luptak I; Calamaras TD; Siwik DA; Miller EJ; Liesa M; Shirihai OS; Pimentel DR; Cohen RA; Bachschmid MM; Colucci WS
    J Am Heart Assoc; 2016 Jan; 5(1):. PubMed ID: 26755553
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mitochondrial pyruvate transport in working guinea-pig heart. Work-related vs. carrier-mediated control of pyruvate oxidation.
    Bünger R; Mallet RT
    Biochim Biophys Acta; 1993 Sep; 1151(2):223-36. PubMed ID: 8104034
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Decreased Mitochondrial Pyruvate Transport Activity in the Diabetic Heart: ROLE OF MITOCHONDRIAL PYRUVATE CARRIER 2 (MPC2) ACETYLATION.
    Vadvalkar SS; Matsuzaki S; Eyster CA; Giorgione JR; Bockus LB; Kinter CS; Kinter M; Humphries KM
    J Biol Chem; 2017 Mar; 292(11):4423-4433. PubMed ID: 28154187
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of Sodium-Glucose Linked Transporter 2 Inhibition With Ertugliflozin on Mitochondrial Function, Energetics, and Metabolic Gene Expression in the Presence and Absence of Diabetes Mellitus in Mice.
    Croteau D; Luptak I; Chambers JM; Hobai I; Panagia M; Pimentel DR; Siwik DA; Qin F; Colucci WS
    J Am Heart Assoc; 2021 Jul; 10(13):e019995. PubMed ID: 34169737
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.