BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 35924666)

  • 1. Molecularly Imprinted Nanozymes with Free Substrate Access for Catalyzing the Ligation of ssDNA Sequences.
    Guo Z; Luo Q; Liu Z
    Chemistry; 2022 Nov; 28(61):e202202052. PubMed ID: 35924666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of DNA ligase-mimicking nanozymes
    He X; Luo Q; Guo Z; Li Y; Liu Z
    J Mater Chem B; 2022 Sep; 10(35):6716-6723. PubMed ID: 35133373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparing Selective Nanozymes by Molecular Imprinting.
    Li Y; Zhang X; Liu J
    Methods Mol Biol; 2021; 2359():223-232. PubMed ID: 34410673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecularly imprinted nanozymes with faster catalytic activity and better specificity.
    Zhang Z; Li Y; Zhang X; Liu J
    Nanoscale; 2019 Mar; 11(11):4854-4863. PubMed ID: 30820498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecularly Imprinted and Cladded Nanoparticles Provide Better Phosphorylation Recognition.
    Zhao J; He H; Guo Z; Liu Z
    Anal Chem; 2021 Dec; 93(48):16194-16202. PubMed ID: 34839654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Introducing molecular imprinting onto nanozymes: toward selective catalytic analysis.
    Bu Z; Huang L; Li S; Tian Q; Tang Z; Diao Q; Chen X; Liu J; Niu X
    Anal Bioanal Chem; 2024 Feb; ():. PubMed ID: 38308711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecularly Imprinted Polymers with Enzymatic Properties Reduce Cytokine Release Syndrome.
    Zhong L; Zhai J; Ma Y; Huang Y; Peng Y; Wang YE; Peng Z; Gan H; Yuan Z; Yan P; Li Q; Guan S
    ACS Nano; 2022 Mar; 16(3):3797-3807. PubMed ID: 35188759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Imprinting on Nanozymes for Sensing Applications.
    Cardoso AR; Frasco MF; Serrano V; Fortunato E; Sales MGF
    Biosensors (Basel); 2021 May; 11(5):. PubMed ID: 34067985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent development in the design of artificial enzymes through molecular imprinting technology.
    Tian R; Li Y; Xu J; Hou C; Luo Q; Liu J
    J Mater Chem B; 2022 Sep; 10(35):6590-6606. PubMed ID: 35748432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Imprinting on Inorganic Nanozymes for Hundred-fold Enzyme Specificity.
    Zhang Z; Zhang X; Liu B; Liu J
    J Am Chem Soc; 2017 Apr; 139(15):5412-5419. PubMed ID: 28345903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-step synthesis of mussel-inspired molecularly imprinted magnetic polymer as stationary phase for chip-based open tubular capillary electrochromatography enantioseparation.
    Wang XN; Liang RP; Meng XY; Qiu JD
    J Chromatogr A; 2014 Oct; 1362():301-8. PubMed ID: 25182855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient preparation of surface imprinted magnetic nanoparticles using poly (2-anilinoethanol) as imprinting coating for the selective recognition of glycoprotein.
    Li D; Tu T; Yang M; Xu C
    Talanta; 2018 Jul; 184():316-324. PubMed ID: 29674048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of lysozyme imprinted magnetic nanoparticles via surface graft copolymerization.
    Wang Y; Chai Z; Sun Y; Gao M; Fu G
    J Biomater Sci Polym Ed; 2015; 26(11):644-56. PubMed ID: 26073534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecularly imprinted polymers for the selective recognition of microorganisms.
    Dar KK; Shao S; Tan T; Lv Y
    Biotechnol Adv; 2020 Dec; 45():107640. PubMed ID: 33031907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic two-dimensional molecularly imprinted materials for the recognition and separation of proteins.
    Chen F; Zhao W; Zhang J; Kong J
    Phys Chem Chem Phys; 2016 Jan; 18(2):718-25. PubMed ID: 26388494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Preparation of liquid crystal-based molecularly imprinted monolith and its molecular recognition thermodynamics].
    Wei Q; Chen X; Bai L; Zhao L; Huang Y; Liu Z
    Se Pu; 2021 Nov; 39(11):1171-1181. PubMed ID: 34677012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly selective nanozyme-based glucose sensing platform via construction of artificial recognition sites on gold nanospheres.
    Yu J; Chen T; Wen X; Shi H; Wang L; Xu Y
    Biosens Bioelectron; 2024 Jun; 253():116169. PubMed ID: 38442620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review on carbon-based molecularly-imprinted polymers (CBMIP) for detection of hazardous pollutants in aqueous solutions.
    Kamyab H; Chelliapan S; Tavakkoli O; Mesbah M; Bhutto JK; Khademi T; Kirpichnikova I; Ahmad A; ALJohani AA
    Chemosphere; 2022 Dec; 308(Pt 3):136471. PubMed ID: 36126738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of High-Affinity Molecularly Imprinted Nanoparticles for Protein Recognition via a Solid-Phase Synthesis Protocol.
    Canfarotta F; Piletsky SA; Turner NW
    Methods Mol Biol; 2020; 2073():183-194. PubMed ID: 31612443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecularly imprinted polymers based on magnetic metal-organic frameworks for surface-assisted laser desorption/ionization time-of-flight mass spectrometry analysis and simultaneous luteolin enrichment.
    Lu L; Wen Z; Lin J; Zhang K; Gao D; Wang D
    J Chromatogr A; 2022 Aug; 1678():463377. PubMed ID: 35926390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.