These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 35924687)

  • 1. Growth and biofilm formation of
    Abdeljelil N; Ben Miloud Yahia N; Landoulsi A; Chatti A; Wattiez R; Van Houdt R; Gillan D
    Biofouling; 2022 Jul; 38(6):643-655. PubMed ID: 35924687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The response of Cupriavidus metallidurans CH34 to spaceflight in the international space station.
    Leys N; Baatout S; Rosier C; Dams A; s'Heeren C; Wattiez R; Mergeay M
    Antonie Van Leeuwenhoek; 2009 Aug; 96(2):227-45. PubMed ID: 19572210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manual polishing of 3D printed metals produced by laser powder bed fusion reduces biofilm formation.
    McGaffey M; Zur Linden A; Bachynski N; Oblak M; James F; Weese JS
    PLoS One; 2019; 14(2):e0212995. PubMed ID: 30811509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zirconium Nitride Coating Reduced Staphylococcus epidermidis Biofilm Formation on Orthopaedic Implant Surfaces: An In Vitro Study.
    Pilz M; Staats K; Tobudic S; Assadian O; Presterl E; Windhager R; Holinka J
    Clin Orthop Relat Res; 2019 Feb; 477(2):461-466. PubMed ID: 30418277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adhesion and removal kinetics of Bacillus cereus biofilms on Ni-PTFE modified stainless steel.
    Huang K; McLandsborough LA; Goddard JM
    Biofouling; 2016; 32(5):523-33. PubMed ID: 27020838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of modified stainless steel surfaces targeted to reduce biofilm formation by common milk sporeformers.
    Jindal S; Anand S; Huang K; Goddard J; Metzger L; Amamcharla J
    J Dairy Sci; 2016 Dec; 99(12):9502-9513. PubMed ID: 27692715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional analysis of initial biofilm formation on polytetrafluoroethylene in the oral cavity.
    Fuchslocher Hellemann C; Grade S; Heuer W; Dittmer MP; Stiesch M; Schwestka-Polly R; Demling AP
    J Orofac Orthop; 2013 Nov; 74(6):458-67. PubMed ID: 24158582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Impact of Space Flight on Survival and Interaction of
    Byloos B; Coninx I; Van Hoey O; Cockell C; Nicholson N; Ilyin V; Van Houdt R; Boon N; Leys N
    Front Microbiol; 2017; 8():671. PubMed ID: 28503167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physicochemical surface properties of Cupriavidus metallidurans CH34 and Pseudomonas putida mt2 under cadmium stress.
    Shamim S; Rehman A
    J Basic Microbiol; 2014 Apr; 54(4):306-14. PubMed ID: 23564035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative friction of orthodontic wires under dry and wet conditions.
    Stannard JG; Gau JM; Hanna MA
    Am J Orthod; 1986 Jun; 89(6):485-91. PubMed ID: 3459362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of fluorinated polymers against stainless steel, glass and polypropylene in microbial biofilm adherence and removal.
    Hyde FW; Alberg M; Smith K
    J Ind Microbiol Biotechnol; 1997 Aug; 19(2):142-9. PubMed ID: 9366095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of anti-Listeria meat borne Lactobacillus for biofilm formation on selected abiotic surfaces.
    Pérez Ibarreche M; Castellano P; Vignolo G
    Meat Sci; 2014 Jan; 96(1):295-303. PubMed ID: 23933630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spaceflight promotes biofilm formation by Pseudomonas aeruginosa.
    Kim W; Tengra FK; Young Z; Shong J; Marchand N; Chan HK; Pangule RC; Parra M; Dordick JS; Plawsky JL; Collins CH
    PLoS One; 2013; 8(4):e62437. PubMed ID: 23658630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Galleria mellonella as an alternative in vivo model to study bacterial biofilms on stainless steel and titanium implants.
    Mannala GK; Rupp M; Alagboso F; Kerschbaum M; Pfeifer C; Sommer U; Kampschulte M; Domann E; Alt V
    ALTEX; 2021; 38(2):245-252. PubMed ID: 33086380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New quantitative image analysis of staphylococcal biofilms on the surfaces of nontranslucent metallic biomaterials.
    Adachi K; Tsurumoto T; Yonekura A; Nishimura S; Kajiyama S; Hirakata Y; Shindo H
    J Orthop Sci; 2007 Mar; 12(2):178-84. PubMed ID: 17393274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copper Resistance Mediates Long-Term Survival of
    Maertens L; Coninx I; Claesen J; Leys N; Matroule JY; Van Houdt R
    Front Microbiol; 2020; 11():1208. PubMed ID: 32582116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of three-dimensional biofilms on different material surfaces.
    Schiebel J; Noack J; Rödiger S; Kammel A; Menzel F; Schwibbert K; Weise M; Weiss R; Böhm A; Nitschke J; Elimport A; Roggenbuck D; Schierack P
    Biomater Sci; 2020 Jun; 8(12):3500-3510. PubMed ID: 32432585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrodynamic shear stress to remove Listeria monocytogenes biofilms from stainless steel and polytetrafluoroethylene surfaces.
    Gião MS; Keevil CW
    J Appl Microbiol; 2013 Jan; 114(1):256-65. PubMed ID: 23043564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Response of
    Alviz-Gazitua P; Fuentes-Alburquenque S; Rojas LA; Turner RJ; Guiliani N; Seeger M
    Front Microbiol; 2019; 10():1499. PubMed ID: 31338076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial adherence to tantalum versus commonly used orthopedic metallic implant materials.
    Schildhauer TA; Robie B; Muhr G; Köller M
    J Orthop Trauma; 2006 Jul; 20(7):476-84. PubMed ID: 16891939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.