These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 35924764)

  • 1. Monte Carlo technique to study the adsorption affinity of azo dyes by applying new statistical criteria of the predictive potential.
    Toropova AP; Toropov AA; Roncaglioni A; Benfenati E
    SAR QSAR Environ Res; 2022 Aug; 33(8):621-630. PubMed ID: 35924764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico enhancement of azo dye adsorption affinity for cellulose fibre through mechanistic interpretation under guidance of QSPR models using Monte Carlo method with index of ideality correlation.
    Kumar P; Kumar A
    SAR QSAR Environ Res; 2020 Sep; 31(9):697-715. PubMed ID: 32878494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterogeneous fenton degradation of azo dyes catalyzed by modified polyacrylonitrile fiber fe complexes: QSPR (quantitative structure peorperty relationship) study.
    Li B; Dong Y; Ding Z
    J Environ Sci (China); 2013 Jul; 25(7):1469-76. PubMed ID: 24218861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular toxicity of nitrobenzene derivatives to tetrahymena pyriformis based on SMILES descriptors using Monte Carlo, docking, and MD simulations.
    Ouabane M; Zaki K; Tabti K; Alaqarbeh M; Sbai A; Sekkate C; Bouachrine M; Lakhlifi T
    Comput Biol Med; 2024 Feb; 169():107880. PubMed ID: 38211383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Monte Carlo Method as a Tool to Build up Predictive QSPR/QSAR.
    Toropov AA; Toropova AP
    Curr Comput Aided Drug Des; 2020; 16(3):197-206. PubMed ID: 30919781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quasi-SMILES as a basis to build up models of endpoints for nanomaterials.
    Toropova AP; Toropov AA
    Environ Technol; 2023 Dec; 44(28):4460-4467. PubMed ID: 35748421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of power conversion efficiency of phenothiazine-based dye-sensitized solar cells using Monte Carlo method with index of ideality of correlation.
    Kumar A; Kumar P
    SAR QSAR Environ Res; 2021 Oct; 32(10):817-834. PubMed ID: 34530657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and development of novel focal adhesion kinase (FAK) inhibitors using Monte Carlo method with index of ideality of correlation to validate QSAR.
    Kumar P; Kumar A; Sindhu J
    SAR QSAR Environ Res; 2019 Feb; 30(2):63-80. PubMed ID: 30793981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Paradox of 'ideal correlations': improved model for air half-life of persistent organic pollutants.
    Toropova AP; Toropov AA; Lombardo A; Lavado G; Benfenati E
    Environ Technol; 2022 Jun; 43(16):2510-2515. PubMed ID: 33502960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Does the Index of Ideality of Correlation Detect the Better Model Correctly?
    Toropova AP; Toropov AA
    Mol Inform; 2019 Aug; 38(8-9):e1800157. PubMed ID: 30725522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of the adsorption coefficients of some aromatic compounds on multi-wall carbon nanotubes by the Monte Carlo method.
    Ahmadi S; Akbari A
    SAR QSAR Environ Res; 2018 Nov; 29(11):895-909. PubMed ID: 30332923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Monte Carlo method to build up models of the hydrolysis half-lives of organic compounds.
    Toropov AA; Toropova AP; Lombardo A; Roncaglioni A; Lavado GJ; Benfenati E
    SAR QSAR Environ Res; 2021 Jun; 32(6):463-471. PubMed ID: 33896300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The searching for agents for Alzheimer's disease treatment via the system of self-consistent models.
    Toropov AA; Toropova AP; Achary PGR; Raškova M; Raška I
    Toxicol Mech Methods; 2022 Sep; 32(7):549-557. PubMed ID: 35287529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 'Ideal correlations' for the predictive toxicity to
    Toropov AA; Toropova AP; Benfenati E
    Toxicol Mech Methods; 2020 Oct; 30(8):605-610. PubMed ID: 32718259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation intensity index: Building up models for mutagenicity of silver nanoparticles.
    Toropov AA; Toropova AP
    Sci Total Environ; 2020 Oct; 737():139720. PubMed ID: 32554036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of the maximum absorption wavelength of azobenzene dyes by QSPR tools.
    Xu X; Luan F; Liu H; Cheng J; Zhang X
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Dec; 83(1):353-61. PubMed ID: 21930420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excited-state properties from ground-state DFT descriptors: A QSPR approach for dyes.
    Fayet G; Jacquemin D; Wathelet V; Perpète EA; Rotureau P; Adamo C
    J Mol Graph Model; 2010 Feb; 28(6):465-71. PubMed ID: 20036173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can the Monte Carlo method predict the toxicity of binary mixtures?
    Toropova AP; Toropov AA
    Environ Sci Pollut Res Int; 2021 Aug; 28(29):39493-39500. PubMed ID: 33755888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The system of self-consistent models for the uptake of nanoparticles in PaCa2 cancer cells.
    Toropov AA; Toropova AP
    Nanotoxicology; 2021 Sep; 15(7):995-1004. PubMed ID: 34297644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The using of the Index of Ideality of Correlation (IIC) to improve predictive potential of models of water solubility for pesticides.
    Toropova AP; Toropov AA; Carnesecchi E; Benfenati E; Dorne JL
    Environ Sci Pollut Res Int; 2020 Apr; 27(12):13339-13347. PubMed ID: 32020455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.