These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 35924823)

  • 1. Electrochemical Lithiation and Delithiation in Amorphous Si Thin Film Electrodes Studied by
    Endo R; Ohnishi T; Takada K; Masuda T
    J Phys Chem Lett; 2022 Aug; 13(31):7363-7370. PubMed ID: 35924823
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Putra RP; Matsushita K; Ohnishi T; Masuda T
    J Phys Chem Lett; 2024 Jan; 15(2):490-498. PubMed ID: 38190614
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Endo R; Ohnishi T; Takada K; Masuda T
    J Phys Chem Lett; 2020 Aug; 11(16):6649-6654. PubMed ID: 32787227
    [No Abstract]   [Full Text] [Related]  

  • 4. Lithiation of Crystalline Silicon As Analyzed by Operando Neutron Reflectivity.
    Seidlhofer BK; Jerliu B; Trapp M; Hüger E; Risse S; Cubitt R; Schmidt H; Steitz R; Ballauff M
    ACS Nano; 2016 Aug; 10(8):7458-66. PubMed ID: 27447734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pore collapse and regrowth in silicon electrodes for rechargeable batteries.
    DeCaluwe SC; Dhar BM; Huang L; He Y; Yang K; Owejan JP; Zhao Y; Talin AA; Dura JA; Wang H
    Phys Chem Chem Phys; 2015 May; 17(17):11301-12. PubMed ID: 25839065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shedding X-ray Light on the Interfacial Electrochemistry of Silicon Anodes for Li-Ion Batteries.
    Cao C; Shyam B; Wang J; Toney MF; Steinrück HG
    Acc Chem Res; 2019 Sep; 52(9):2673-2683. PubMed ID: 31479242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Operando Raman Spectroscopy and Synchrotron X-ray Diffraction of Lithiation/Delithiation in Silicon Nanoparticle Anodes.
    Tardif S; Pavlenko E; Quazuguel L; Boniface M; Maréchal M; Micha JS; Gonon L; Mareau V; Gebel G; Bayle-Guillemaud P; Rieutord F; Lyonnard S
    ACS Nano; 2017 Nov; 11(11):11306-11316. PubMed ID: 29111665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic origin for the phase transition from amorphous Li(x)Si to crystalline Li15Si4.
    Gu M; Wang Z; Connell JG; Perea DE; Lauhon LJ; Gao F; Wang C
    ACS Nano; 2013 Jul; 7(7):6303-9. PubMed ID: 23795599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of Lithium Insertion Mechanisms of a Thin-Film Si Electrode by Coupling Time-of-Flight Secondary-Ion Mass Spectrometry, X-ray Photoelectron Spectroscopy, and Focused-Ion-Beam/SEM.
    Bordes A; De Vito E; Haon C; Secouard C; Montani A; Marcus P
    ACS Appl Mater Interfaces; 2015 Dec; 7(50):27853-62. PubMed ID: 26618212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micro-Raman Stress Characterization of Crystalline Si as a Function of the Lithiation State.
    Wang H; Kim NS; Song Y; Albertus P; Lee SB; Rubloff G; Stewart D
    ACS Appl Mater Interfaces; 2023 Mar; 15(8):10752-10760. PubMed ID: 36795856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Step toward High-Energy Silicon-Based Thin Film Lithium Ion Batteries.
    Reyes Jiménez A; Klöpsch R; Wagner R; Rodehorst UC; Kolek M; Nölle R; Winter M; Placke T
    ACS Nano; 2017 May; 11(5):4731-4744. PubMed ID: 28437078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ electrochemical lithiation/delithiation observation of individual amorphous Si nanorods.
    Ghassemi H; Au M; Chen N; Heiden PA; Yassar RS
    ACS Nano; 2011 Oct; 5(10):7805-11. PubMed ID: 21902219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of the Crystalline Li
    Bärmann P; Krueger B; Casino S; Winter M; Placke T; Wittstock G
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):55903-55912. PubMed ID: 33259711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First principles simulations of the electrochemical lithiation and delithiation of faceted crystalline silicon.
    Chan MK; Wolverton C; Greeley JP
    J Am Chem Soc; 2012 Sep; 134(35):14362-74. PubMed ID: 22817384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into Reactivity of Silicon Negative Electrodes: Analysis Using Isothermal Microcalorimetry.
    Housel LM; Li W; Quilty CD; Vila MN; Wang L; Tang CR; Bock DC; Wu Q; Tong X; Head AR; Takeuchi KJ; Marschilok AC; Takeuchi ES
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):37567-37577. PubMed ID: 31550121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unraveling the Reaction Mechanisms of SiO Anodes for Li-Ion Batteries by Combining in Situ
    Kitada K; Pecher O; Magusin PCMM; Groh MF; Weatherup RS; Grey CP
    J Am Chem Soc; 2019 May; 141(17):7014-7027. PubMed ID: 30964666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ TEM of two-phase lithiation of amorphous silicon nanospheres.
    McDowell MT; Lee SW; Harris JT; Korgel BA; Wang C; Nix WD; Cui Y
    Nano Lett; 2013 Feb; 13(2):758-64. PubMed ID: 23323680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomistic Simulation Derived Insight on the Irreversible Structural Changes of Si Electrode during Fast and Slow Delithiation.
    Kim KJ; Wortman J; Kim SY; Qi Y
    Nano Lett; 2017 Jul; 17(7):4330-4338. PubMed ID: 28632390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-phase electrochemical lithiation in amorphous silicon.
    Wang JW; He Y; Fan F; Liu XH; Xia S; Liu Y; Harris CT; Li H; Huang JY; Mao SX; Zhu T
    Nano Lett; 2013 Feb; 13(2):709-15. PubMed ID: 23323743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time measurement of stress and damage evolution during initial lithiation of crystalline silicon.
    Chon MJ; Sethuraman VA; McCormick A; Srinivasan V; Guduru PR
    Phys Rev Lett; 2011 Jul; 107(4):045503. PubMed ID: 21867019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.