These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 35924868)

  • 1. Sintering Behaviors of Supported Nanoparticles Related to Spatial Location by a Quasi-Four-Dimensional TEM.
    Liang C; Sun D; Lv H; Chu W; Duan Y; Bu Y; Liu J; Wang H
    Nano Lett; 2022 Aug; 22(16):6523-6529. PubMed ID: 35924868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sintering of catalytic nanoparticles: particle migration or Ostwald ripening?
    Hansen TW; Delariva AT; Challa SR; Datye AK
    Acc Chem Res; 2013 Aug; 46(8):1720-30. PubMed ID: 23634641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct In Situ TEM Visualization and Insight into the Facet-Dependent Sintering Behaviors of Gold on TiO
    Yuan W; Zhang D; Ou Y; Fang K; Zhu B; Yang H; Hansen TW; Wagner JB; Zhang Z; Gao Y; Wang Y
    Angew Chem Int Ed Engl; 2018 Dec; 57(51):16827-16831. PubMed ID: 30397982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface topology of MXene flakes induces the selection of the sintering mechanism for supported Pt nanoparticles.
    Huang J; Zhang Y; Chen J; Zhang Z; Zhang C; Huang C; Fei L
    Chem Sci; 2024 Aug; 15(35):14521-30. PubMed ID: 39170721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth of Supported Gold Nanoparticles in Aqueous Phase Studied by in Situ Transmission Electron Microscopy.
    Meijerink MJ; de Jong KP; Zečević J
    J Phys Chem C Nanomater Interfaces; 2020 Jan; 124(3):2202-2212. PubMed ID: 32010421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-situ heating-and-electron tomography for materials research: from 3D (in-situ 2D) to 4D (in-situ 3D).
    Hata S; Ihara S; Saito H; Murayama M
    Microscopy (Oxf); 2024 Apr; 73(2):133-144. PubMed ID: 38462986
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Ihara S; Yoshinaga M; Miyazaki H; Wada K; Hata S; Saito H; Murayama M
    Nanoscale; 2023 Jun; 15(23):10133-10140. PubMed ID: 37264793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The energetics of supported metal nanoparticles: relationships to sintering rates and catalytic activity.
    Campbell CT
    Acc Chem Res; 2013 Aug; 46(8):1712-9. PubMed ID: 23607711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct imaging Au nanoparticle migration inside mesoporous silica channels.
    Liu Z; Che R; Elzatahry AA; Zhao D
    ACS Nano; 2014 Oct; 8(10):10455-60. PubMed ID: 25264601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical and Thermal Sintering of Supported Metals with Emphasis on Cobalt Catalysts During Fischer-Tropsch Synthesis.
    Rahmati M; Safdari MS; Fletcher TH; Argyle MD; Bartholomew CH
    Chem Rev; 2020 May; 120(10):4455-4533. PubMed ID: 32363864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrical sintering of silver nanoparticle ink studied by in-situ TEM probing.
    Hummelgård M; Zhang R; Nilsson HE; Olin H
    PLoS One; 2011 Feb; 6(2):e17209. PubMed ID: 21390314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Movement of palladium nanoparticles in hollow graphitised nanofibres: the role of migration and coalescence in nanocatalyst sintering during the Suzuki-Miyaura reaction.
    Lodge RW; Rance GA; Fay MW; Khlobystov AN
    Nanoscale; 2018 Oct; 10(40):19046-19051. PubMed ID: 30280181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Situ Sintering of CdSe/CdS Nanocrystals under Electron Beam Irradiation.
    Tang L; Zhang C; Liao C; Liu Y; Cheng Y
    Nanomaterials (Basel); 2023 Dec; 13(24):. PubMed ID: 38132980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ electron microscopy studies of the sintering of palladium nanoparticles on alumina during catalyst regeneration processes.
    Liu RJ; Crozier PA; Smith CM; Hucul DA; Blackson J; Salaita G
    Microsc Microanal; 2004 Feb; 10(1):77-85. PubMed ID: 15306069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sintering of passivated gold nanoparticles under the electron beam.
    Chen Y; Palmer RE; Wilcoxon JP
    Langmuir; 2006 Mar; 22(6):2851-5. PubMed ID: 16519494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the Degradation Mechanisms of Pt Electrocatalysts in PEMFCs by Combining 2D and 3D Identical Location TEM.
    Yu K; Li C; Xie J; Ferreira PJ
    Nano Lett; 2023 Mar; 23(5):1858-1864. PubMed ID: 36848293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal Nanocatalyst Sintering Interrogated at Complementary Length Scales.
    Solano E; Dendooven J; Deduytsche D; Poonkottil N; Feng JY; Roeffaers MBJ; Detavernier C; Filez M
    Small; 2023 Feb; 19(5):e2205217. PubMed ID: 36445117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revealing Sintering Kinetics of MoS
    Song B; Yang TT; Yuan Y; Sharifi-Asl S; Cheng M; Saidi WA; Liu Y; Shahbazian-Yassar R
    ACS Nano; 2020 Apr; 14(4):4074-4086. PubMed ID: 32283933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does Cluster Encapsulation Inhibit Sintering? Stabilization of Size-Selected Pt Clusters on Fe
    Kaiser S; Plansky J; Krinninger M; Shavorskiy A; Zhu S; Heiz U; Esch F; Lechner BAJ
    ACS Catal; 2023 May; 13(9):6203-6213. PubMed ID: 37180966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relating rates of catalyst sintering to the disappearance of individual nanoparticles during Ostwald ripening.
    Challa SR; Delariva AT; Hansen TW; Helveg S; Sehested J; Hansen PL; Garzon F; Datye AK
    J Am Chem Soc; 2011 Dec; 133(51):20672-5. PubMed ID: 22087502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.