BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 35924923)

  • 1. Rotavirus VP4 Epitope of a Broadly Neutralizing Human Antibody Defined by Its Structure Bound with an Attenuated-Strain Virion.
    Jenni S; Li Z; Wang Y; Bessey T; Salgado EN; Schmidt AG; Greenberg HB; Jiang B; Harrison SC
    J Virol; 2022 Aug; 96(16):e0062722. PubMed ID: 35924923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antibodies to rotavirus outer capsid glycoprotein VP7 neutralize infectivity by inhibiting virion decapsidation.
    Ludert JE; Ruiz MC; Hidalgo C; Liprandi F
    J Virol; 2002 Jul; 76(13):6643-51. PubMed ID: 12050377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localization of membrane permeabilization and receptor binding sites on the VP4 hemagglutinin of rotavirus: implications for cell entry.
    Tihova M; Dryden KA; Bellamy AR; Greenberg HB; Yeager M
    J Mol Biol; 2001 Dec; 314(5):985-92. PubMed ID: 11743716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual Recognition of Sialic Acid and αGal Epitopes by the VP8* Domains of the Bovine Rotavirus G6P[5] WC3 and of Its Mono-reassortant G4P[5] RotaTeq Vaccine Strains.
    Alfajaro MM; Kim JY; Barbé L; Cho EH; Park JG; Soliman M; Baek YB; Kang MI; Kim SH; Kim GJ; Park SI; Pendu JL; Cho KO
    J Virol; 2019 Sep; 93(18):. PubMed ID: 31243129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteolysis of monomeric recombinant rotavirus VP4 yields an oligomeric VP5* core.
    Dormitzer PR; Greenberg HB; Harrison SC
    J Virol; 2001 Aug; 75(16):7339-50. PubMed ID: 11462006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The rhesus rotavirus VP4 sialic acid binding domain has a galectin fold with a novel carbohydrate binding site.
    Dormitzer PR; Sun ZY; Wagner G; Harrison SC
    EMBO J; 2002 Mar; 21(5):885-97. PubMed ID: 11867517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression and characterization of a novel truncated rotavirus VP4 for the development of a recombinant rotavirus vaccine.
    Li Y; Xue M; Yu L; Luo G; Yang H; Jia L; Zeng Y; Li T; Ge S; Xia N
    Vaccine; 2018 Apr; 36(16):2086-2092. PubMed ID: 29555220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The VP5 domain of VP4 can mediate attachment of rotaviruses to cells.
    Zárate S; Espinosa R; Romero P; Méndez E; Arias CF; López S
    J Virol; 2000 Jan; 74(2):593-9. PubMed ID: 10623720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional refolding of the penetration protein on a non-enveloped virus.
    Herrmann T; Torres R; Salgado EN; Berciu C; Stoddard D; Nicastro D; Jenni S; Harrison SC
    Nature; 2021 Feb; 590(7847):666-670. PubMed ID: 33442061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. VP5* rearranges when rotavirus uncoats.
    Yoder JD; Trask SD; Vo TP; Binka M; Feng N; Harrison SC; Greenberg HB; Dormitzer PR
    J Virol; 2009 Nov; 83(21):11372-7. PubMed ID: 19692464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunogenicity, antigenicity, and protection efficacy of baculovirus expressed VP4 trypsin cleavage products, VP5(1)* and VP8* from rhesus rotavirus.
    Dunn SJ; Fiore L; Werner RL; Cross TL; Broome RL; Ruggeri FM; Greenberg HB
    Arch Virol; 1995; 140(11):1969-78. PubMed ID: 7503695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of rotavirus outer-layer protein VP7 bound with a neutralizing Fab.
    Aoki ST; Settembre EC; Trask SD; Greenberg HB; Harrison SC; Dormitzer PR
    Science; 2009 Jun; 324(5933):1444-7. PubMed ID: 19520960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localization of VP4 neutralization sites in rotavirus by three-dimensional cryo-electron microscopy.
    Prasad BV; Burns JW; Marietta E; Estes MK; Chiu W
    Nature; 1990 Feb; 343(6257):476-9. PubMed ID: 2153941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterotypic protection and induction of a broad heterotypic neutralization response by rotavirus-like particles.
    Crawford SE; Estes MK; Ciarlet M; Barone C; O'Neal CM; Cohen J; Conner ME
    J Virol; 1999 Jun; 73(6):4813-22. PubMed ID: 10233942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomic model of an infectious rotavirus particle.
    Settembre EC; Chen JZ; Dormitzer PR; Grigorieff N; Harrison SC
    EMBO J; 2011 Jan; 30(2):408-16. PubMed ID: 21157433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH-induced conformational change of the rotavirus VP4 spike: implications for cell entry and antibody neutralization.
    Pesavento JB; Crawford SE; Roberts E; Estes MK; Prasad BV
    J Virol; 2005 Jul; 79(13):8572-80. PubMed ID: 15956598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Humoral immune responses to VP4 and its cleavage products VP5* and VP8* in infants vaccinated with rhesus rotavirus.
    Padilla-Noriega L; Fiore L; Rennels MB; Losonsky GA; Mackow ER; Greenberg HB
    J Clin Microbiol; 1992 Jun; 30(6):1392-7. PubMed ID: 1320626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antibodies to the trypsin cleavage peptide VP8 neutralize rotavirus by inhibiting binding of virions to target cells in culture.
    Ruggeri FM; Greenberg HB
    J Virol; 1991 May; 65(5):2211-9. PubMed ID: 1850007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Serial Passaging of the Human Rotavirus CDC-9 Strain in Cell Culture Leads to Attenuation: Characterization from
    Resch TK; Wang Y; Moon S; Jiang B
    J Virol; 2020 Jul; 94(15):. PubMed ID: 32461318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Location of intrachain disulfide bonds in the VP5* and VP8* trypsin cleavage fragments of the rhesus rotavirus spike protein VP4.
    Patton JT; Hua J; Mansell EA
    J Virol; 1993 Aug; 67(8):4848-55. PubMed ID: 8392619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.