These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 35925509)

  • 1. Toward intraoperative tissue classification: exploiting signal feedback from an ultrasonic aspirator for brain tissue differentiation.
    Bockelmann N; Schetelig D; Kesslau D; Buschschlüter S; Ernst F; Bonsanto MM
    Int J Comput Assist Radiol Surg; 2022 Sep; 17(9):1591-1599. PubMed ID: 35925509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasonic Aspirator for Tissue Contact Detection: An Online Classification on Time-Series.
    Bockelmann N; Kahrs B; Kesslau D; Schetelig D; Bonsanto MM; Buschschluter S; Ernst F
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-7. PubMed ID: 38083180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations.
    Vu H; Kim HC; Jung M; Lee JH
    Neuroimage; 2020 Dec; 223():117328. PubMed ID: 32896633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning for evolutive lymphoma and residual masses recognition in whole body diffusion weighted magnetic resonance images.
    Ferjaoui R; Cherni MA; Boujnah S; Kraiem NEH; Kraiem T
    Comput Methods Programs Biomed; 2021 Sep; 209():106320. PubMed ID: 34390938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid DNA methylation-based classification of pediatric brain tumors from ultrasonic aspirate specimens.
    Simon M; Kuschel LP; von Hoff K; Yuan D; Hernáiz Driever P; Hain EG; Koch A; Capper D; Schulz M; Thomale UW; Euskirchen P
    J Neurooncol; 2024 May; ():. PubMed ID: 38769169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic classification of mice vocalizations using Machine Learning techniques and Convolutional Neural Networks.
    Premoli M; Baggi D; Bianchetti M; Gnutti A; Bondaschi M; Mastinu A; Migliorati P; Signoroni A; Leonardi R; Memo M; Bonini SA
    PLoS One; 2021; 16(1):e0244636. PubMed ID: 33465075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supervised Machine Learning Methods and Hyperspectral Imaging Techniques Jointly Applied for Brain Cancer Classification.
    Urbanos G; Martín A; Vázquez G; Villanueva M; Villa M; Jimenez-Roldan L; Chavarrías M; Lagares A; Juárez E; Sanz C
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34073145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine Learning for Touch Localization on an Ultrasonic Lamb Wave Touchscreen.
    Bahrami S; Moriot J; Masson P; Grondin F
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Learning Empowered Structural Health Monitoring and Damage Diagnostics for Structures with Weldment via Decoding Ultrasonic Guided Wave.
    Zhang Z; Pan H; Wang X; Lin Z
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35891068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring Mixing Processes Using Ultrasonic Sensors and Machine Learning.
    Bowler AL; Bakalis S; Watson NJ
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32218142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic Comparison of the Influence of Different Data Preprocessing Methods on the Performance of Gait Classifications Using Machine Learning.
    Burdack J; Horst F; Giesselbach S; Hassan I; Daffner S; Schöllhorn WI
    Front Bioeng Biotechnol; 2020; 8():260. PubMed ID: 32351945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of Automated Identification of Phases in Videos of Cataract Surgery Using Machine Learning and Deep Learning Techniques.
    Yu F; Silva Croso G; Kim TS; Song Z; Parker F; Hager GD; Reiter A; Vedula SS; Ali H; Sikder S
    JAMA Netw Open; 2019 Apr; 2(4):e191860. PubMed ID: 30951163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fetal birthweight prediction with measured data by a temporal machine learning method.
    Tao J; Yuan Z; Sun L; Yu K; Zhang Z
    BMC Med Inform Decis Mak; 2021 Jan; 21(1):26. PubMed ID: 33494752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Can natural language processing help differentiate inflammatory intestinal diseases in China? Models applying random forest and convolutional neural network approaches.
    Tong Y; Lu K; Yang Y; Li J; Lin Y; Wu D; Yang A; Li Y; Yu S; Qian J
    BMC Med Inform Decis Mak; 2020 Sep; 20(1):248. PubMed ID: 32993636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proposing a convolutional neural network for stress assessment by means of derived heart rate from functional near infrared spectroscopy.
    Hakimi N; Jodeiri A; Mirbagheri M; Setarehdan SK
    Comput Biol Med; 2020 Jun; 121():103810. PubMed ID: 32568682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Segmentation of white matter hyperintensities using convolutional neural networks with global spatial information in routine clinical brain MRI with none or mild vascular pathology.
    Rachmadi MF; Valdés-Hernández MDC; Agan MLF; Di Perri C; Komura T;
    Comput Med Imaging Graph; 2018 Jun; 66():28-43. PubMed ID: 29523002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Convolutional neural networks for classification of Alzheimer's disease: Overview and reproducible evaluation.
    Wen J; Thibeau-Sutre E; Diaz-Melo M; Samper-González J; Routier A; Bottani S; Dormont D; Durrleman S; Burgos N; Colliot O; ;
    Med Image Anal; 2020 Jul; 63():101694. PubMed ID: 32417716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classifying Goliath Grouper (
    Brewster LR; Ibrahim AK; DeGroot BC; Ostendorf TJ; Zhuang H; Chérubin LM; Ajemian MJ
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time classification of tumour and non-tumour tissue in colorectal cancer using diffuse reflectance spectroscopy and neural networks to aid margin assessment.
    Nazarian S; Gkouzionis I; Murphy J; Darzi A; Patel N; Peters CJ; Elson DS
    Int J Surg; 2024 Apr; 110(4):1983-1991. PubMed ID: 38241421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of Deep Learning Architectures for Accurate and Rapid Detection of Internal Mechanical Damage of Blueberry Using Hyperspectral Transmittance Data.
    Wang Z; Hu M; Zhai G
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29642454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.