These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 35925665)

  • 21. Monitoring differences in gene expression levels and polyhydroxyalkanoate (PHA) production in Pseudomonas putida KT2440 grown on different carbon sources.
    Wang Q; Nomura CT
    J Biosci Bioeng; 2010 Dec; 110(6):653-9. PubMed ID: 20807680
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of GlpR repressor in Pseudomonas putida KT2440 growth and PHA production from glycerol.
    Escapa IF; del Cerro C; García JL; Prieto MA
    Environ Microbiol; 2013 Jan; 15(1):93-110. PubMed ID: 22646161
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integrated analysis of gene expression and metabolic fluxes in PHA-producing Pseudomonas putida grown on glycerol.
    Beckers V; Poblete-Castro I; Tomasch J; Wittmann C
    Microb Cell Fact; 2016 May; 15():73. PubMed ID: 27142075
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Contribution of Uncharacterized Target Genes of MxtR/ErdR to Carbon Source Utilization by Pseudomonas putida KT2440.
    Henríquez T; Hsu JS; Hernandez JS; Kuppermann S; Eder M; Jung H
    Microbiol Spectr; 2023 Feb; 11(1):e0292322. PubMed ID: 36511656
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pseudomonas putida CSV86: a candidate genome for genetic bioaugmentation.
    Paliwal V; Raju SC; Modak A; Phale PS; Purohit HJ
    PLoS One; 2014; 9(1):e84000. PubMed ID: 24475028
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Cellular Response to Lanthanum Is Substrate Specific and Reveals a Novel Route for Glycerol Metabolism in Pseudomonas putida KT2440.
    Wehrmann M; Toussaint M; Pfannstiel J; Billard P; Klebensberger J
    mBio; 2020 Apr; 11(2):. PubMed ID: 32345644
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phototrophic Lactate Utilization by
    Govindaraju A; McKinlay JB; LaSarre B
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30902855
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Engineering of Pseudomonas putida for accelerated co-utilization of glucose and cellobiose yields aerobic overproduction of pyruvate explained by an upgraded metabolic model.
    Bujdoš D; Popelářová B; Volke DC; Nikel PI; Sonnenschein N; Dvořák P
    Metab Eng; 2023 Jan; 75():29-46. PubMed ID: 36343876
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome Sequence of Naphthalene-Degrading Soil Bacterium Pseudomonas putida CSV86.
    Phale PS; Paliwal V; Raju SC; Modak A; Purohit HJ
    Genome Announc; 2013 Jan; 1(1):. PubMed ID: 23469351
    [No Abstract]   [Full Text] [Related]  

  • 30. Benzoate mediates the simultaneous repression of anaerobic 4-methylbenzoate and succinate utilization in Magnetospirillum sp. strain pMbN1.
    Lahme S; Trautwein K; Strijkstra A; Dörries M; Wöhlbrand L; Rabus R
    BMC Microbiol; 2014 Oct; 14():269. PubMed ID: 25344702
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assessing Carbon Source-Dependent Phenotypic Variability in Pseudomonas putida.
    Nikel PI; de Lorenzo V
    Methods Mol Biol; 2018; 1745():287-301. PubMed ID: 29476475
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hierarchical routing in carbon metabolism favors iron-scavenging strategy in iron-deficient soil
    Mendonca CM; Yoshitake S; Wei H; Werner A; Sasnow SS; Thannhauser TW; Aristilde L
    Proc Natl Acad Sci U S A; 2020 Dec; 117(51):32358-32369. PubMed ID: 33273114
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Photoassimilation of organic compounds by Thiocapsa roseopersicina].
    Zhukov VG; Firsov NN
    Mikrobiologiia; 1976; 45(6):946-50. PubMed ID: 1012053
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improved p-hydroxybenzoate production by engineered Pseudomonas putida S12 by using a mixed-substrate feeding strategy.
    Meijnen JP; Verhoef S; Briedjlal AA; de Winde JH; Ruijssenaars HJ
    Appl Microbiol Biotechnol; 2011 May; 90(3):885-93. PubMed ID: 21287166
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biotransformation of toxic lignin and aromatic compounds of lignocellulosic feedstock into eco-friendly biopolymers by Pseudomonas putida KT2440.
    Mohammad SH; Bhukya B
    Bioresour Technol; 2022 Nov; 363():128001. PubMed ID: 36150429
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Properties of an inducible C 4 -dicarboxylic acid transport system in Bacillus subtilis.
    Ghei OK; Kay WW
    J Bacteriol; 1973 Apr; 114(1):65-79. PubMed ID: 4633350
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The regulation of carbohydrate metabolism in Klebsiella aerogenes NCTC 418 organisms, growing in chemostat culture.
    Neijssel OM; Tempest DW
    Arch Microbiol; 1975 Dec; 106(3):251-8. PubMed ID: 766718
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of the Crc regulator on the hierarchical use of carbon sources from a complete medium in Pseudomonas.
    La Rosa R; Behrends V; Williams HD; Bundy JG; Rojo F
    Environ Microbiol; 2016 Mar; 18(3):807-18. PubMed ID: 26568055
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of oxygen concentration on the intermediary metabolism of Leishmania major promastigotes.
    Keegan F; Blum JJ
    Mol Biochem Parasitol; 1990 Mar; 39(2):235-45. PubMed ID: 2108330
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence for the involvement of multiple pathways in the biodegradation of 1- and 2-methylnaphthalene by Pseudomonas putida CSV86.
    Mahajan MC; Phale PS; Vaidyanathan CS
    Arch Microbiol; 1994; 161(5):425-33. PubMed ID: 8042906
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.