These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 35925665)
41. Metabolic and regulatory rearrangements underlying glycerol metabolism in Pseudomonas putida KT2440. Nikel PI; Kim J; de Lorenzo V Environ Microbiol; 2014 Jan; 16(1):239-54. PubMed ID: 23967821 [TBL] [Abstract][Full Text] [Related]
42. Biodegradation of phenanthrene by Pseudomonas sp. strain PP2: novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation. Prabhu Y; Phale PS Appl Microbiol Biotechnol; 2003 May; 61(4):342-51. PubMed ID: 12743764 [TBL] [Abstract][Full Text] [Related]
44. Contextual Flexibility in Pseudomonas aeruginosa Central Carbon Metabolism during Growth in Single Carbon Sources. Dolan SK; Kohlstedt M; Trigg S; Vallejo Ramirez P; Kaminski CF; Wittmann C; Welch M mBio; 2020 Mar; 11(2):. PubMed ID: 32184246 [No Abstract] [Full Text] [Related]
45. Carbaryl as a Carbon and Nitrogen Source: an Inducible Methylamine Metabolic Pathway at the Biochemical and Molecular Levels in Kamini ; Sharma R; Punekar NS; Phale PS Appl Environ Microbiol; 2018 Dec; 84(24):. PubMed ID: 30315077 [TBL] [Abstract][Full Text] [Related]
46. A study of the flexibility of the carbon catabolic pathways of extremophilic P. aeruginosa san ai exposed to benzoate versus glucose as sole carbon sources by multi omics analytical platform. Medić A; Hüttmann N; Lješević M; Risha Y; Berezovski MV; Minić Z; Karadžić I Microbiol Res; 2022 Jun; 259():126998. PubMed ID: 35276454 [TBL] [Abstract][Full Text] [Related]
47. Multi-omics analysis unravels a segregated metabolic flux network that tunes co-utilization of sugar and aromatic carbons in Kukurugya MA; Mendonca CM; Solhtalab M; Wilkes RA; Thannhauser TW; Aristilde L J Biol Chem; 2019 May; 294(21):8464-8479. PubMed ID: 30936206 [No Abstract] [Full Text] [Related]
48. Analysis of the proteome of Pseudomonas putida KT2440 grown on different sources of carbon and energy. Kurbatov L; Albrecht D; Herrmann H; Petruschka L Environ Microbiol; 2006 Mar; 8(3):466-78. PubMed ID: 16478453 [TBL] [Abstract][Full Text] [Related]
49. The glycerol-dependent metabolic persistence of Pseudomonas putida KT2440 reflects the regulatory logic of the GlpR repressor. Nikel PI; Romero-Campero FJ; Zeidman JA; Goñi-Moreno Á; de Lorenzo V mBio; 2015 Mar; 6(2):. PubMed ID: 25827416 [TBL] [Abstract][Full Text] [Related]
50. The correlations between TCA-glyoxalate metabolite and antibiotic production of Streptomyces sp. M4018 grown in glycerol, glucose, and starch mediums. Tarhan L; Kayali HA; Sazak A; Sahin N Appl Biochem Biotechnol; 2011 Jun; 164(3):318-37. PubMed ID: 21128122 [TBL] [Abstract][Full Text] [Related]
51. Efficiency of naphthalene and salicylate degradation by a recombinant Pseudomonas putida mutant strain defective in glucose metabolism. Samanta SK; Bhushan B; Jain RK Appl Microbiol Biotechnol; 2001 May; 55(5):627-31. PubMed ID: 11414331 [TBL] [Abstract][Full Text] [Related]
52. The PalkBFGHJKL promoter is under carbon catabolite repression control in Pseudomonas oleovorans but not in Escherichia coli alk+ recombinants. Staijen IE; Marcionelli R; Witholt B J Bacteriol; 1999 Mar; 181(5):1610-6. PubMed ID: 10049394 [TBL] [Abstract][Full Text] [Related]
53. Sequential uptake of aldoses over fructose and enhanced phosphate solubilization in Rhizobium sp. RM. Champaneria A; Iyer B; Rajkumar S Appl Microbiol Biotechnol; 2022 Jun; 106(11):4251-4268. PubMed ID: 35661910 [TBL] [Abstract][Full Text] [Related]
54. Pichia pastoris regulates its gene-specific response to different carbon sources at the transcriptional, rather than the translational, level. Prielhofer R; Cartwright SP; Graf AB; Valli M; Bill RM; Mattanovich D; Gasser B BMC Genomics; 2015 Mar; 16(1):167. PubMed ID: 25887254 [TBL] [Abstract][Full Text] [Related]
55. High-Yield Production of 4-Hydroxybenzoate From Glucose or Glycerol by an Engineered Lenzen C; Wynands B; Otto M; Bolzenius J; Mennicken P; Blank LM; Wierckx N Front Bioeng Biotechnol; 2019; 7():130. PubMed ID: 31245364 [TBL] [Abstract][Full Text] [Related]
56. Biobased PET from lignin using an engineered cis, cis-muconate-producing Pseudomonas putida strain with superior robustness, energy and redox properties. Kohlstedt M; Weimer A; Weiland F; Stolzenberger J; Selzer M; Sanz M; Kramps L; Wittmann C Metab Eng; 2022 Jul; 72():337-352. PubMed ID: 35545205 [TBL] [Abstract][Full Text] [Related]
57. Intracellular degradation of two structurally different polyhydroxyalkanoic acids accumulated in Pseudomonas putida and Pseudomonas citronellolis from mixtures of octanoic acid and 5-phenylvaleric acid. Chung DM; Choi MH; Song JJ; Yoon SC; Kang IK; Huh NE Int J Biol Macromol; 2001 Dec; 29(4-5):243-50. PubMed ID: 11718820 [TBL] [Abstract][Full Text] [Related]
58. A tricarboxylic acid cycle intermediate regulating transcription of a chloroaromatic biodegradative pathway: fumarate-mediated repression of the clcABD operon. McFall SM; Abraham B; Narsolis CG; Chakrabarty AM J Bacteriol; 1997 Nov; 179(21):6729-35. PubMed ID: 9352923 [TBL] [Abstract][Full Text] [Related]
59. Bioconversion of fumarate to succinate using glycerol as a carbon source. Ryu HW; Kang KH; Yun JS Appl Biochem Biotechnol; 1999; 77-79():511-20. PubMed ID: 10399284 [TBL] [Abstract][Full Text] [Related]
60. Blocks in Tricarboxylic Acid Cycle of Salmonella enterica Cause Global Perturbation of Carbon Storage, Motility, and Host-Pathogen Interaction. Noster J; Hansmeier N; Persicke M; Chao TC; Kurre R; Popp J; Liss V; Reuter T; Hensel M mSphere; 2019 Dec; 4(6):. PubMed ID: 31826974 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]