These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 35925871)
1. Computer-aided diagnostic models to classify lymph node metastasis and lymphoma involvement in enlarged cervical lymph nodes using PET/CT. Yang Y; Zheng B; Li Y; Li Y; Ma X Med Phys; 2023 Jan; 50(1):152-162. PubMed ID: 35925871 [TBL] [Abstract][Full Text] [Related]
2. Application of deep learning to the diagnosis of cervical lymph node metastasis from thyroid cancer with CT. Lee JH; Ha EJ; Kim JH Eur Radiol; 2019 Oct; 29(10):5452-5457. PubMed ID: 30877461 [TBL] [Abstract][Full Text] [Related]
3. Deep learning combined with radiomics for the classification of enlarged cervical lymph nodes. Zhang W; Peng J; Zhao S; Wu W; Yang J; Ye J; Xu S J Cancer Res Clin Oncol; 2022 Oct; 148(10):2773-2780. PubMed ID: 35562596 [TBL] [Abstract][Full Text] [Related]
4. Deep convolutional neural network for differentiating between sarcoidosis and lymphoma based on [ Aoki H; Miyazaki Y; Anzai T; Yokoyama K; Tsuchiya J; Shirai T; Shibata S; Sakakibara R; Mitsumura T; Honda T; Furusawa H; Okamoto T; Tateishi T; Tamaoka M; Yamamoto M; Takahashi K; Tateishi U; Yamaguchi T Eur Radiol; 2024 Jan; 34(1):374-383. PubMed ID: 37535157 [TBL] [Abstract][Full Text] [Related]
5. Deep-learning features based on F18 fluorodeoxyglucose positron emission tomography/computed tomography ( Wang H; Zhang J; Li Y; Wang D; Zhang T; Yang F; Li Y; Zhang Y; Yang L; Li P Clin Radiol; 2024 Sep; 79(9):e1152-e1158. PubMed ID: 38955636 [TBL] [Abstract][Full Text] [Related]
6. Comparison of machine learning methods for classifying mediastinal lymph node metastasis of non-small cell lung cancer from Wang H; Zhou Z; Li Y; Chen Z; Lu P; Wang W; Liu W; Yu L EJNMMI Res; 2017 Dec; 7(1):11. PubMed ID: 28130689 [TBL] [Abstract][Full Text] [Related]
7. Deep learning method with a convolutional neural network for image classification of normal and metastatic axillary lymph nodes on breast ultrasonography. Ozaki J; Fujioka T; Yamaga E; Hayashi A; Kujiraoka Y; Imokawa T; Takahashi K; Okawa S; Yashima Y; Mori M; Kubota K; Oda G; Nakagawa T; Tateishi U Jpn J Radiol; 2022 Aug; 40(8):814-822. PubMed ID: 35284996 [TBL] [Abstract][Full Text] [Related]
8. Prediction of mediastinal lymph node metastasis based on Yin G; Song Y; Li X; Zhu L; Su Q; Dai D; Xu W Eur Radiol; 2021 Jun; 31(6):3983-3992. PubMed ID: 33201286 [TBL] [Abstract][Full Text] [Related]
9. FDG PET/CT radiomics as a tool to differentiate between reactive axillary lymphadenopathy following COVID-19 vaccination and metastatic breast cancer axillary lymphadenopathy: a pilot study. Eifer M; Pinian H; Klang E; Alhoubani Y; Kanana N; Tau N; Davidson T; Konen E; Catalano OA; Eshet Y; Domachevsky L Eur Radiol; 2022 Sep; 32(9):5921-5929. PubMed ID: 35385985 [TBL] [Abstract][Full Text] [Related]
10. Prediction of Lymph Node Maximum Standardized Uptake Value in Patients With Cancer Using a 3D Convolutional Neural Network: A Proof-of-Concept Study. Shaish H; Mutasa S; Makkar J; Chang P; Schwartz L; Ahmed F AJR Am J Roentgenol; 2019 Feb; 212(2):238-244. PubMed ID: 30540209 [TBL] [Abstract][Full Text] [Related]
11. Developing a new radiomics-based CT image marker to detect lymph node metastasis among cervical cancer patients. Chen X; Liu W; Thai TC; Castellano T; Gunderson CC; Moore K; Mannel RS; Liu H; Zheng B; Qiu Y Comput Methods Programs Biomed; 2020 Dec; 197():105759. PubMed ID: 33007594 [TBL] [Abstract][Full Text] [Related]
12. A deep learning and radiomics fusion model based on contrast-enhanced computer tomography improves preoperative identification of cervical lymph node metastasis of oral squamous cell carcinoma. Chen Z; Yu Y; Liu S; Du W; Hu L; Wang C; Li J; Liu J; Zhang W; Peng X Clin Oral Investig; 2023 Dec; 28(1):39. PubMed ID: 38151672 [TBL] [Abstract][Full Text] [Related]
13. Diagnosis of lymph node metastasis on rectal cancer by PET-CT computer imaging combined with MRI technology. Li F; Hu J; Jiang H; Sun Y J Infect Public Health; 2020 Sep; 13(9):1347-1353. PubMed ID: 31289005 [TBL] [Abstract][Full Text] [Related]
14. AAR-LN-DQ: Automatic anatomy recognition based disease quantification in thoracic lymph node zones via FDG PET/CT images without Nodal Delineation. Xu G; Udupa JK; Tong Y; Odhner D; Cao H; Torigian DA Med Phys; 2020 Aug; 47(8):3467-3484. PubMed ID: 32418221 [TBL] [Abstract][Full Text] [Related]
15. Lymph Node Metastasis Prediction from Primary Breast Cancer US Images Using Deep Learning. Zhou LQ; Wu XL; Huang SY; Wu GG; Ye HR; Wei Q; Bao LY; Deng YB; Li XR; Cui XW; Dietrich CF Radiology; 2020 Jan; 294(1):19-28. PubMed ID: 31746687 [TBL] [Abstract][Full Text] [Related]
16. [The role of preoperative (18)F-FDG PET-CT in lymphatic metastasis diagnosis of cutaneous malignant melanoma on extremities and trunk]. Zhang XX; Fang Y; Xu LB; Xu SF; Zhao ZG; Sun C; Ma PQ; Liu T; Yu SJ; Zhang WJ Zhonghua Zhong Liu Za Zhi; 2018 May; 40(5):372-378. PubMed ID: 29860765 [No Abstract] [Full Text] [Related]
17. Machine learning to identify lymph node metastasis from thyroid cancer in patients undergoing contrast-enhanced CT studies. Masuda T; Nakaura T; Funama Y; Sugino K; Sato T; Yoshiura T; Baba Y; Awai K Radiography (Lond); 2021 Aug; 27(3):920-926. PubMed ID: 33762147 [TBL] [Abstract][Full Text] [Related]
18. Deep Learning Prediction of Axillary Lymph Node Metastasis in Breast Cancer Patients Using Clinical Implication-Applied Preprocessed CT Images. Park TY; Kwon LM; Hyeon J; Cho BJ; Kim BJ Curr Oncol; 2024 Apr; 31(4):2278-2288. PubMed ID: 38668072 [No Abstract] [Full Text] [Related]
19. Combining positron emission tomography/computed tomography, radiomics, and sentinel lymph node mapping for nodal staging of endometrial cancer patients. Crivellaro C; Landoni C; Elisei F; Buda A; Bonacina M; Grassi T; Monaco L; Giuliani D; Gotuzzo I; Magni S; Di Martino G; Delle Marchette M; Guerra L; Landoni F; Fruscio R; Messa C; De Bernardi E Int J Gynecol Cancer; 2020 Mar; 30(3):378-382. PubMed ID: 32079712 [TBL] [Abstract][Full Text] [Related]
20. Combining many-objective radiomics and 3D convolutional neural network through evidential reasoning to predict lymph node metastasis in head and neck cancer. Chen L; Zhou Z; Sher D; Zhang Q; Shah J; Pham NL; Jiang S; Wang J Phys Med Biol; 2019 Mar; 64(7):075011. PubMed ID: 30780137 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]