These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 35926443)

  • 1. Inverse weighting method with jackknife variance estimator for differential expression analysis of single-cell RNA sequencing data.
    Zhou L; Pan Q
    Comput Biol Chem; 2022 Oct; 100():107733. PubMed ID: 35926443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ZIAQ: a quantile regression method for differential expression analysis of single-cell RNA-seq data.
    Zhang W; Wei Y; Zhang D; Xu EY
    Bioinformatics; 2020 May; 36(10):3124-3130. PubMed ID: 32053182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observation weights unlock bulk RNA-seq tools for zero inflation and single-cell applications.
    Van den Berge K; Perraudeau F; Soneson C; Love MI; Risso D; Vert JP; Robinson MD; Dudoit S; Clement L
    Genome Biol; 2018 Feb; 19(1):24. PubMed ID: 29478411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Comprehensive Survey of Statistical Approaches for Differential Expression Analysis in Single-Cell RNA Sequencing Studies.
    Das S; Rai A; Merchant ML; Cave MC; Rai SN
    Genes (Basel); 2021 Dec; 12(12):. PubMed ID: 34946896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CDSImpute: An ensemble similarity imputation method for single-cell RNA sequence dropouts.
    Azim R; Wang S; Dipu SA
    Comput Biol Med; 2022 Jul; 146():105658. PubMed ID: 35751187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A posterior probability based Bayesian method for single-cell RNA-seq data imputation.
    Chen S; Zheng R; Tian L; Wu FX; Li M
    Methods; 2023 Aug; 216():21-38. PubMed ID: 37315825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bubble: a fast single-cell RNA-seq imputation using an autoencoder constrained by bulk RNA-seq data.
    Chen S; Yan X; Zheng R; Li M
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36567258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GE-Impute: graph embedding-based imputation for single-cell RNA-seq data.
    Wu X; Zhou Y
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35901457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. I-Impute: a self-consistent method to impute single cell RNA sequencing data.
    Feng X; Chen L; Wang Z; Li SC
    BMC Genomics; 2020 Nov; 21(Suppl 10):618. PubMed ID: 33208097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SwarnSeq: An improved statistical approach for differential expression analysis of single-cell RNA-seq data.
    Das S; Rai SN
    Genomics; 2021 May; 113(3):1308-1324. PubMed ID: 33662531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. netNMF-sc: leveraging gene-gene interactions for imputation and dimensionality reduction in single-cell expression analysis.
    Elyanow R; Dumitrascu B; Engelhardt BE; Raphael BJ
    Genome Res; 2020 Feb; 30(2):195-204. PubMed ID: 31992614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. scBoolSeq: Linking scRNA-seq statistics and Boolean dynamics.
    Magaña-López G; Calzone L; Zinovyev A; Paulevé L
    PLoS Comput Biol; 2024 Jul; 20(7):e1011620. PubMed ID: 38976751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AGImpute: imputation of scRNA-seq data based on a hybrid GAN with dropouts identification.
    Zhu X; Meng S; Li G; Wang J; Peng X
    Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38317025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel graph-based k-partitioning approach improves the detection of gene-gene correlations by single-cell RNA sequencing.
    Xu H; Hu Y; Zhang X; Aouizerat BE; Yan C; Xu K
    BMC Genomics; 2022 Jan; 23(1):35. PubMed ID: 34996359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An accurate and robust imputation method scImpute for single-cell RNA-seq data.
    Li WV; Li JJ
    Nat Commun; 2018 Mar; 9(1):997. PubMed ID: 29520097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Markov random field model-based approach for differentially expressed gene detection from single-cell RNA-seq data.
    Zhu B; Li H; Zhang L; Chandra SS; Zhao H
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35514182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa.
    Zhang H; Lee CAA; Li Z; Garbe JR; Eide CR; Petegrosso R; Kuang R; Tolar J
    PLoS Comput Biol; 2018 Apr; 14(4):e1006053. PubMed ID: 29630593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SinCWIm: An imputation method for single-cell RNA sequence dropouts using weighted alternating least squares.
    Gong L; Cui X; Liu Y; Lin C; Gao Z
    Comput Biol Med; 2024 Mar; 171():108225. PubMed ID: 38442556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of scRNA-seq data analysis method combinations.
    Xu L; Xue T; Ding W; Shen L
    Brief Funct Genomics; 2022 Nov; 21(6):433-440. PubMed ID: 36124658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential expression of single-cell RNA-seq data using Tweedie models.
    Mallick H; Chatterjee S; Chowdhury S; Chatterjee S; Rahnavard A; Hicks SC
    Stat Med; 2022 Aug; 41(18):3492-3510. PubMed ID: 35656596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.