BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 35926481)

  • 1. Get a grip: inward dactyl motions improve efficiency of sideways-walking gait for an amphibious crab-like robot.
    Graf NM; Grezmak JE; Daltorio KA
    Bioinspir Biomim; 2022 Oct; 17(6):. PubMed ID: 35926481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dactyls and inward gripping stance for amphibious crab-like robots on sand.
    Graf NM; Behr AM; Daltorio KA
    Bioinspir Biomim; 2021 Mar; 16(2):. PubMed ID: 33470968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sideways crab-walking is faster and more efficient than forward walking for a hexapod robot.
    Chen Y; Grezmak JE; Graf NM; Daltorio KA
    Bioinspir Biomim; 2022 May; 17(4):. PubMed ID: 35439747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal planar leg geometry in robots and crabs for idealized rocky terrain.
    Chen Y; Clifton G; Graf NM; Durand K; Taylor J; Gong Y; Grezmak JE; Daltorio KA
    Bioinspir Biomim; 2022 Oct; 17(6):. PubMed ID: 36055245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crab-inspired compliant leg design method for adaptive locomotion of a multi-legged robot.
    Zhang J; Liu Q; Zhou J; Song A
    Bioinspir Biomim; 2022 Jan; 17(2):. PubMed ID: 34937001
    [No Abstract]   [Full Text] [Related]  

  • 6. In-plane gait planning for earthworm-like metameric robots using genetic algorithm.
    Zhan X; Xu J; Fang H
    Bioinspir Biomim; 2020 Jul; 15(5):056012. PubMed ID: 32470958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gait and locomotion analysis of a soft-hybrid multi-legged modular miniature robot.
    Mahkam N; Özcan O
    Bioinspir Biomim; 2021 Sep; 16(6):. PubMed ID: 34492650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Advances in Bipedal Walking Robots: Review of Gait, Drive, Sensors and Control Systems.
    Mikolajczyk T; Mikołajewska E; Al-Shuka HFN; Malinowski T; Kłodowski A; Pimenov DY; Paczkowski T; Hu F; Giasin K; Mikołajewski D; Macko M
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A fault tolerant gait for a hexapod robot over uneven terrain.
    Yang JM; Kim JH
    IEEE Trans Syst Man Cybern B Cybern; 2000; 30(1):172-80. PubMed ID: 18244739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Force-sensitive mechanoreceptors of the dactyl of the crab: single-unit responses during walking and evaluation of function.
    Libersat F; Clarac F; Zill S
    J Neurophysiol; 1987 May; 57(5):1618-37. PubMed ID: 3585482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability-Guaranteed and High Terrain Adaptability Static Gait for Quadruped Robots.
    Hao Q; Wang Z; Wang J; Chen G
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32878028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Non-Flat Terrain Biped Gait Planner Based on DIRCON.
    Chen B; Zang X; Zhang Y; Gao L; Zhu Y; Zhao J
    Biomimetics (Basel); 2022 Nov; 7(4):. PubMed ID: 36412731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insect-computer hybrid legged robot with user-adjustable speed, step length and walking gait.
    Cao F; Zhang C; Choo HY; Sato H
    J R Soc Interface; 2016 Mar; 13(116):. PubMed ID: 27030043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An insect-scale robot reveals the effects of different body dynamics regimes during open-loop running in feature-laden terrain.
    Schiebel PE; Shum J; Cerbone H; Wood RJ
    Bioinspir Biomim; 2022 Feb; 17(2):. PubMed ID: 34874292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Minimalist analogue robot discovers animal-like walking gaits.
    Smith BJH; Usherwood JR
    Bioinspir Biomim; 2020 Feb; 15(2):026004. PubMed ID: 31869827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Foot and body control of biped robots to walk on irregularly protruded uneven surfaces.
    Park JH; Kim ES
    IEEE Trans Syst Man Cybern B Cybern; 2009 Feb; 39(1):289-97. PubMed ID: 19068443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous Online Adaptation of Bioinspired Adaptive Neuroendocrine Control for Autonomous Walking Robots.
    Homchanthanakul J; Manoonpong P
    IEEE Trans Neural Netw Learn Syst; 2022 May; 33(5):1833-1845. PubMed ID: 34669583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Viability leads to the emergence of gait transitions in learning agile quadrupedal locomotion on challenging terrains.
    Shafiee M; Bellegarda G; Ijspeert A
    Nat Commun; 2024 Apr; 15(1):3073. PubMed ID: 38594288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural control and adaptive neural forward models for insect-like, energy-efficient, and adaptable locomotion of walking machines.
    Manoonpong P; Parlitz U; Wörgötter F
    Front Neural Circuits; 2013; 7():12. PubMed ID: 23408775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-Phase Joint-Angle Trajectory Generation Inspired by Dog Motion for Control of Quadruped Robot.
    Choi J
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.