BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 35926565)

  • 21. Identification of UBE2C as hub gene in driving prostate cancer by integrated bioinformatics analysis.
    Wang Y; Wang J; Tang Q; Ren G
    PLoS One; 2021; 16(2):e0247827. PubMed ID: 33630978
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Muscleblind-like 1 antisense RNA 1 inhibits cell proliferation, invasion, and migration of prostate cancer by sponging miR-181a-5p and regulating PTEN/PI3K/AKT/mTOR signaling.
    Ding X; Xu X; He XF; Yuan Y; Chen C; Shen XY; Su S; Chen Z; Xu ST; Huang YH
    Bioengineered; 2021 Dec; 12(1):803-814. PubMed ID: 33648424
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Identification of Potential Biomarkers and Biological Pathways in Prostate Cancer.
    Song Z; Huang Y; Zhao Y; Ruan H; Yang H; Cao Q; Liu D; Zhang X; Chen K
    J Cancer; 2019; 10(6):1398-1408. PubMed ID: 31031850
    [No Abstract]   [Full Text] [Related]  

  • 24. CDT1 facilitates metastasis in prostate cancer and correlates with cell cycle regulation.
    Wang C; Che J; Jiang Y; Chen P; Bao G; Li C
    Cancer Biomark; 2022; 34(3):459-469. PubMed ID: 35253732
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of crucial hub genes and potential molecular mechanisms in breast cancer by integrated bioinformatics analysis and experimental validation.
    Yadav DK; Sharma A; Dube P; Shaikh S; Vaghasia H; Rawal RM
    Comput Biol Med; 2022 Oct; 149():106036. PubMed ID: 36096037
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of Potential Key Genes and Pathways in Enzalutamide-Resistant Prostate Cancer Cell Lines: A Bioinformatics Analysis with Data from the Gene Expression Omnibus (GEO) Database.
    Zheng L; Dou X; Ma X; Qu W; Tang X
    Biomed Res Int; 2020; 2020():8341097. PubMed ID: 32724813
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of key genes and pathways in castrate-resistant prostate cancer by integrated bioinformatics analysis.
    Wu YP; Ke ZB; Lin F; Wen YA; Chen S; Li XD; Chen SH; Sun XL; Huang JB; Zheng QS; Xue XY; Wei Y; Xu N
    Pathol Res Pract; 2020 Oct; 216(10):153109. PubMed ID: 32853947
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CircLMTK2 acts as a tumor suppressor in prostate cancer via regulating the expression of microRNA-183.
    Jin C; Zhao W; Zhang Z; Liu W
    Life Sci; 2020 Jan; 241():117097. PubMed ID: 31760099
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integrative analysis of epigenomics, transcriptomics, and proteomics to identify key targets and pathways of Weining granule for gastric cancer.
    Liang MK; Liang XQ; Zhong J; Wei YT; Lian ZP; Huang ZK; Liang J
    J Ethnopharmacol; 2021 Apr; 270():113787. PubMed ID: 33422657
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of novel biomarkers correlated with prostate cancer progression by an integrated bioinformatic analysis.
    Ma Z; Wang J; Ding L; Chen Y
    Medicine (Baltimore); 2020 Jul; 99(28):e21158. PubMed ID: 32664150
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Long non-coding RNA LINP1 promotes the malignant progression of prostate cancer by regulating p53.
    Wu HF; Ren LG; Xiao JQ; Zhang Y; Mao XW; Zhou LF
    Eur Rev Med Pharmacol Sci; 2018 Jul; 22(14):4467-4476. PubMed ID: 30058678
    [TBL] [Abstract][Full Text] [Related]  

  • 32. TERF1 downregulation promotes the migration and invasion of the PC3 prostate cancer cell line as a target of miR‑155.
    Chen W; He LN; Liang Y; Zeng X; Wu CP; Su MQ; Cheng Y; Liu JH
    Mol Med Rep; 2020 Dec; 22(6):5209-5218. PubMed ID: 33174061
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In silico identification of key genes and signaling pathways targeted by a panel of signature microRNAs in prostate cancer.
    Baruah MM; Sharma N
    Med Oncol; 2019 Apr; 36(5):43. PubMed ID: 30937635
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Identification and validation of hub genes in prostate cancer progression based on weighted gene co-expression network analysis].
    Zhang H; Chen N; Wang X; Gao B; Ling M; Chen G; Wu Z; Li Y; Zhong W; Pan B
    Nan Fang Yi Ke Da Xue Xue Bao; 2021 Nov; 41(11):1631-1640. PubMed ID: 34916188
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of potential hub genes via bioinformatics analysis combined with experimental verification in colorectal cancer.
    Zhou H; Yang Z; Yue J; Chen Y; Chen T; Mu T; Liu H; Bi X
    Mol Carcinog; 2020 Apr; 59(4):425-438. PubMed ID: 32064687
    [TBL] [Abstract][Full Text] [Related]  

  • 36. THBS4 silencing regulates the cancer stem cell-like properties in prostate cancer via blocking the PI3K/Akt pathway.
    Hou Y; Li H; Huo W
    Prostate; 2020 Jul; 80(10):753-763. PubMed ID: 32421868
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Identification of Key Gene Expression Signature in Prostate Cancer.
    Huang Y; Cao Q; Song Z; Ruan H; Wang K; Chen K; Zhang X
    Crit Rev Eukaryot Gene Expr; 2020; 30(2):153-168. PubMed ID: 32558494
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Long noncoding RNA TUG1 regulates prostate cancer cell proliferation, invasion and migration via the Nrf2 signaling axis.
    Yang G; Yin H; Lin F; Gao S; Zhan K; Tong H; Tang X; Pan Q; Gou X
    Pathol Res Pract; 2020 Apr; 216(4):152851. PubMed ID: 32057513
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Bioinformatics-based identification of the key genes associated with prostate cancer].
    Zhao HB; Xu GB; Yang WQ; Li XZ; Chen SX; Gan Y; Su ZM; Sheng M; Zeng YR
    Zhonghua Nan Ke Xue; 2021 Jun; 27(6):489-498. PubMed ID: 34914287
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analyzing the LncRNA, miRNA, and mRNA Regulatory Network in Prostate Cancer with Bioinformatics Software.
    He JH; Han ZP; Zou MX; Wang L; Lv YB; Zhou JB; Cao MR; Li YG
    J Comput Biol; 2018 Feb; 25(2):146-157. PubMed ID: 28836827
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.