These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 3592662)
41. 1-Alkyl-2,3-diacylglycerol synthesis in primary culture cells of guinea pig harderian gland. Park SH; Kano K; Seyama Y J Biochem; 1993 Oct; 114(4):492-7. PubMed ID: 8276758 [TBL] [Abstract][Full Text] [Related]
42. Synthesis in vitro of very long chain fatty acids in Vibrio sp. strain ABE-1. Morita N; Okajima N; Gotoh M; Hayashi H; Okuyama H; Sasaki S Arch Microbiol; 1992; 157(3):223-8. PubMed ID: 1510554 [TBL] [Abstract][Full Text] [Related]
43. Improved pinocembrin production in Escherichia coli by engineering fatty acid synthesis. Cao W; Ma W; Zhang B; Wang X; Chen K; Li Y; Ouyang P J Ind Microbiol Biotechnol; 2016 Apr; 43(4):557-66. PubMed ID: 26733394 [TBL] [Abstract][Full Text] [Related]
44. The relationship between structure and function for and the regulation of the enzymes of fatty acid synthesis. Wakil SJ Ann N Y Acad Sci; 1986; 478():203-19. PubMed ID: 2879500 [No Abstract] [Full Text] [Related]
45. Proton transfer in methylmalonyl-CoA epimerase from Propionibacterium shermanii. The reaction of (2R)-methylmalonyl-CoA in tritiated water. Fuller JQ; Leadlay PF Biochem J; 1983 Sep; 213(3):643-50. PubMed ID: 6311170 [TBL] [Abstract][Full Text] [Related]
46. Fatty acid composition and primer specificity of de novo fatty acid synthetase in Bacillus globispores, Bacillus insolitus, and Bacillus psychrophilus. Kaneda T; Smith EJ; Naik DN Can J Microbiol; 1983 Dec; 29(12):1634-41. PubMed ID: 6673817 [TBL] [Abstract][Full Text] [Related]
47. A newly identified methyl-branched chain fatty acid synthesizing enzyme from Mycobacterium tuberculosis var. bovis BCG. Fernandes ND; Kolattukudy PE J Biol Chem; 1998 Jan; 273(5):2823-8. PubMed ID: 9446591 [TBL] [Abstract][Full Text] [Related]
48. Composition of long chain bases in ceramide of the guinea pig Harderian gland. Yasugi E; Kasama T; Seyama Y J Biochem; 1991 Aug; 110(2):202-6. PubMed ID: 1761514 [TBL] [Abstract][Full Text] [Related]
49. Flexibility of zonation of fatty acid oxidation in rat liver. Guzmán M; Bijleveld C; Geelen MJ Biochem J; 1995 Nov; 311 ( Pt 3)(Pt 3):853-60. PubMed ID: 7487941 [TBL] [Abstract][Full Text] [Related]
50. Irreversible inactivation of chicken liver fatty acid synthetase by its substrates acetyl and malonyl CoA. Effect of temperature and NADP n fatty acid and triacetic acid lactone synthesis. Srinivasan KR; Kumar S Biochem Biophys Res Commun; 1981 Apr; 99(3):920-7. PubMed ID: 7247949 [No Abstract] [Full Text] [Related]
51. New malonyl-CoA-dependent fatty acid elongation system in Mycobacterium smegmatis. Kikuchi S; Kusaka T J Biochem; 1982 Sep; 92(3):839-44. PubMed ID: 7142122 [TBL] [Abstract][Full Text] [Related]
52. Identification of alkyldiacylglycerols containing saturated methyl branched chains in the Harderian gland of guinea pig. Yamazaki T; Seyama Y; Otsuka H; Ogawa H; Yamakawa T J Biochem; 1981 Feb; 89(2):683-91. PubMed ID: 7240136 [TBL] [Abstract][Full Text] [Related]
53. Malonyl-CoA and the regulation of fatty acid oxidation in soleus muscle. Alam N; Saggerson ED Biochem J; 1998 Aug; 334 ( Pt 1)(Pt 1):233-41. PubMed ID: 9693125 [TBL] [Abstract][Full Text] [Related]
54. Evidence that the medium-chain acyltransferase of lactating-goat mammary-gland fatty acid synthetase is identical with the acetyl/malonyltransferase. Mikkelsen J; Højrup P; Hansen HF; Hansen JK; Knudsen J Biochem J; 1985 May; 227(3):981-5. PubMed ID: 4004809 [TBL] [Abstract][Full Text] [Related]
55. Androgenic control of 1-alkyl-2,3-diacylglycerol in the harderian gland of the golden hamster, Mesocricetus auratus. Seyama Y; Hida A; Hayashi S; Buzzell GR J Biochem; 1996 Apr; 119(4):799-804. PubMed ID: 8743584 [TBL] [Abstract][Full Text] [Related]
57. Purification and characterization of an unusually large fatty acid synthase from Mycobacterium tuberculosis var. bovis BCG. Kikuchi S; Rainwater DL; Kolattukudy PE Arch Biochem Biophys; 1992 Jun; 295(2):318-26. PubMed ID: 1586161 [TBL] [Abstract][Full Text] [Related]
58. One-step purification and properties of a two-peptide fatty acid synthetase from the uropygial gland of the goose. Buckner JS; Kolattukudy PE Biochemistry; 1976 May; 15(9):1948-57. PubMed ID: 817736 [TBL] [Abstract][Full Text] [Related]
59. Substrate control of termination of fatty acid biosynthesis by fatty acid synthetase from Brevibacterium ammoniagenes. Kawaguchi A; Arai K; Seyama Y; Yamakawa T; Okuda S J Biochem; 1980 Aug; 88(2):303-6. PubMed ID: 7419496 [TBL] [Abstract][Full Text] [Related]
60. Transacylation as a chain-termination mechanism in fatty acid synthesis by mammalian fatty acid synthetase. Synthesis of medium-chain-length (C8-C12) acyl-CoA esters by goat mammary-gland fatty acid synthetase. Knudsen J; Grunnet I Biochem J; 1982 Jan; 202(1):139-43. PubMed ID: 7082303 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]