These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 3592663)

  • 1. Temperature adaptation of fish hemoglobins reflected in rates of autoxidation.
    Wilson RR; Knowles FC
    Arch Biochem Biophys; 1987 May; 255(1):210-3. PubMed ID: 3592663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative analysis of autoxidation of haemoglobin.
    Jensen FB
    J Exp Biol; 2001 Jun; 204(Pt 11):2029-33. PubMed ID: 11441044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidation reactions of human, opossum (Didelphis virginiana) and spot (Leiostomus xanthurus) hemoglobins: a search for a correlation with some structural-functional properties.
    Alayash AI; Ryan BA; Fratantoni JC
    Comp Biochem Physiol B; 1993 Oct; 106(2):427-32. PubMed ID: 8243064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hemoglobin autoxidation at physiological concentrations.
    Mansouri A; Perry CA
    Hemoglobin; 1987; 11(4):353-71. PubMed ID: 3667322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-pressure adaptation of muscle proteins from deep-sea fishes, Coryphaenoides yaquinae and C. armatus.
    Morita T
    Ann N Y Acad Sci; 2010 Feb; 1189():91-4. PubMed ID: 20233373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hemoglobin-mediated oxidation of washed minced cod muscle phospholipids: effect of pH and hemoglobin source.
    Undeland I; Kristinsson HG; Hultin HO
    J Agric Food Chem; 2004 Jul; 52(14):4444-51. PubMed ID: 15237950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biphasic nature in the autoxidation reaction of human oxyhemoglobin.
    Tsuruga M; Shikama K
    Biochim Biophys Acta; 1997 Jan; 1337(1):96-104. PubMed ID: 9003441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A possible new control mechanism suggested by resonance Raman spectra from a deep ocean fish hemoglobin.
    Friedman JM; Campbell BF; Noble RW
    Biophys Chem; 1990 Aug; 37(1-3):43-59. PubMed ID: 2285802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pressure-Temperature Interactions on M4-Lactate Dehydrogenases From Hydrothermal Vent Fishes: Evidence for Adaptation to Elevated Temperatures by the Zoarcid Thermarces andersoni, but not by the Bythitid, Bythites hollisi.
    Dahlhoff E; Schneidemann S; Somero GN
    Biol Bull; 1990 Aug; 179(1):134-139. PubMed ID: 29314911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure, function, and molecular ecology of fish hemoglobins.
    Powers DA
    Ann N Y Acad Sci; 1974 Nov; 241(0):472-90. PubMed ID: 4530674
    [No Abstract]   [Full Text] [Related]  

  • 11. Involvement of methemoglobin (MetHb) formation and hemin loss in the pro-oxidant activity of fish hemoglobins.
    Maestre R; Pazos M; Medina I
    J Agric Food Chem; 2009 Aug; 57(15):7013-21. PubMed ID: 19722582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hematology of three deep-sea fishes: a reflection of low metabolic rates.
    Graham MS; Haedrich RL; Fletcher GL
    Comp Biochem Physiol A Comp Physiol; 1985; 80(1):79-84. PubMed ID: 2858294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of autoxidation of hemoglobin Kempsey (beta 99 Asp----Asn).
    Tomoda A; Takizawa T; Yoneyama Y
    Hemoglobin; 1984; 8(2):137-49. PubMed ID: 6469694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N-hydroxy-N-arylacetamides. V. Differences in the mechanism of haemoglobin oxidation in vitro by N-hydroxy-4-chloroacetanilide and N-hydroxy-4-chloroaniline.
    Lenk W; Riedl M
    Xenobiotica; 1989 Apr; 19(4):453-75. PubMed ID: 2546327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homeoviscous adaptation under pressure: the pressure dependence of membrane order in brain myelin membranes of deep-sea fish.
    Behan MK; Macdonald AG; Jones GR; Cossins AR
    Biochim Biophys Acta; 1992 Jan; 1103(2):317-23. PubMed ID: 1543716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pressure tolerance of deep-sea enzymes can be evolved through increasing volume changes in protein transitions: a study with lactate dehydrogenases from abyssal and hadal fishes.
    Gerringer ME; Yancey PH; Tikhonova OV; Vavilov NE; Zgoda VG; Davydov DR
    FEBS J; 2020 Dec; 287(24):5394-5410. PubMed ID: 32250538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptations to high hydrostatic pressure.
    Somero GN
    Annu Rev Physiol; 1992; 54():557-77. PubMed ID: 1314046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methemoglobin reductase activity in intact fish red blood cells.
    Jensen FB; Nielsen K
    Comp Biochem Physiol A Mol Integr Physiol; 2018 Feb; 216():14-19. PubMed ID: 29133139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical ecology of deep-sea animals.
    Somero GN
    Experientia; 1992 Jun; 48(6):537-43. PubMed ID: 1319350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative sequence analysis of myosin heavy chain proteins from congeneric shallow- and deep-living rattail fish (genus Coryphaenoides).
    Morita T
    J Exp Biol; 2008 May; 211(Pt 9):1362-7. PubMed ID: 18424669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.