These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 35926706)

  • 1. The Na
    Fruergaard MU; Dach I; Andersen JL; Ozol M; Shahsavar A; Quistgaard EM; Poulsen H; Fedosova NU; Nissen P
    J Biol Chem; 2022 Sep; 298(9):102317. PubMed ID: 35926706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A kinetic comparison between E2P and the E2P-like state induced by a beryllium fluoride complex in the Na,K-ATPase. Interactions with Rb
    Faraj SE; Centeno M; Rossi RC; Montes MR
    Biochim Biophys Acta Biomembr; 2019 Feb; 1861(2):355-365. PubMed ID: 30412697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal fluoride complexes of Na,K-ATPase: characterization of fluoride-stabilized phosphoenzyme analogues and their interaction with cardiotonic steroids.
    Cornelius F; Mahmmoud YA; Toyoshima C
    J Biol Chem; 2011 Aug; 286(34):29882-92. PubMed ID: 21708939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The E2P-like state induced by magnesium fluoride complexes in the Na,K-ATPase. Kinetics of formation and interaction with Rb(+).
    Montes MR; Ferreira-Gomes MS; Centeno M; Rossi RC
    Biochim Biophys Acta; 2015 Jul; 1848(7):1514-23. PubMed ID: 25838127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. E2P-like states of plasma membrane Ca
    Saffioti NA; de Sautu M; Ferreira-Gomes MS; Rossi RC; Berlin J; Rossi JPFC; Mangialavori IC
    Biochim Biophys Acta Biomembr; 2019 Feb; 1861(2):366-379. PubMed ID: 30419189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. E2P phosphoforms of Na,K-ATPase. II. Interaction of substrate and cation-binding sites in Pi phosphorylation of Na,K-ATPase.
    Cornelius F; Fedosova NU; Klodos I
    Biochemistry; 1998 Nov; 37(47):16686-96. PubMed ID: 9843437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of ATP with the phosphoenzyme of the Na+,K+-ATPase.
    Khalid M; Fouassier G; Apell HJ; Cornelius F; Clarke RJ
    Biochemistry; 2010 Feb; 49(6):1248-58. PubMed ID: 20063899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracellular Requirements for Passive Proton Transport through the Na
    Stanley KS; Meyer DJ; Gatto C; Artigas P
    Biophys J; 2016 Dec; 111(11):2430-2439. PubMed ID: 27926844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solvent effects on substrate and phosphate interactions with the (Na+ + K+)-ATPase.
    Robinson JD
    Biochim Biophys Acta; 1989 Feb; 994(2):95-103. PubMed ID: 2535941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acid-labile ATP and/or ADP/P(i) binding to the tetraprotomeric form of Na/K-ATPase accompanying catalytic phosphorylation-dephosphorylation cycle.
    Yokoyama T; Kaya S; Abe K; Taniguchi K; Katoh T; Yazawa M; Hayashi Y; Mârdh S
    J Biol Chem; 1999 Nov; 274(45):31792-6. PubMed ID: 10542201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct natures of beryllium fluoride-bound, aluminum fluoride-bound, and magnesium fluoride-bound stable analogues of an ADP-insensitive phosphoenzyme intermediate of sarcoplasmic reticulum Ca2+-ATPase: changes in catalytic and transport sites during phosphoenzyme hydrolysis.
    Danko S; Yamasaki K; Daiho T; Suzuki H
    J Biol Chem; 2004 Apr; 279(15):14991-8. PubMed ID: 14754887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic heterogeneity of phosphoenzyme of Na,K-ATPase modeled by unmixed lipid phases. Competence of the phosphointermediate.
    Klodos I; Post RL; Forbush B
    J Biol Chem; 1994 Jan; 269(3):1734-43. PubMed ID: 8294422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Tetraprotomeric hypothesis of Na/K-ATPase].
    Taniguchi K; Kaya S; Yokoyama T; Abe K
    Nihon Yakurigaku Zasshi; 1999 Sep; 114(3):179-84. PubMed ID: 10553581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leucine 332 at the boundary between the fourth transmembrane segment and the cytoplasmic domain of Na+,K+-ATPase plays a pivotal role in the ion translocating conformational changes.
    Vilsen B
    Biochemistry; 1997 Oct; 36(43):13312-24. PubMed ID: 9341223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Breakdown of Na+/K+-exchanging ATPase phosphoenzymes formed from ATP and from inorganic phosphate during Na+-ATPase activity.
    Beaugé L
    Eur J Biochem; 2001 Nov; 268(21):5627-32. PubMed ID: 11683886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous binding of phosphate and TNP-ADP to FITC-modified NA+,K(+)-ATPase.
    Scheiner-Bobis G; Antonipillai J; Farley RA
    Biochemistry; 1993 Sep; 32(37):9592-9. PubMed ID: 8396968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of ADP-sensitive phosphorylated intermediate in the electric eel Na, K-ATPase preparation.
    Yoda A; Yoda S
    Mol Pharmacol; 1982 Nov; 22(3):693-9. PubMed ID: 6296660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sodium ions, acting at high-affinity extracellular sites, inhibit sodium-ATPase activity of the sodium pump by slowing dephosphorylation.
    Beaugé LA; Glynn IM
    J Physiol; 1979 Apr; 289():17-31. PubMed ID: 222896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature effects on sodium pump phosphoenzyme distribution in human red blood cells.
    Kaplan JH; Kenney LJ
    J Gen Physiol; 1985 Jan; 85(1):123-36. PubMed ID: 2578548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. (Na+ + K+)-ATPase: confirmation of the three-pool model for the phosphointermediates of Na+-ATPase activity. Estimation of the enzyme-ATP dissociation rate constant.
    Klodos I; Nørby JG
    Biochim Biophys Acta; 1987 Feb; 897(2):302-14. PubMed ID: 3028481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.