These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 35926750)

  • 81. Legacy and emerging per- and polyfluorinated alkyl substances (PFASs) in sediment and edible fish from the Eastern Red Sea.
    Ali AM; Sanden M; Higgins CP; Hale SE; Alarif WM; Al-Lihaibi SS; Ræder EM; Langberg HA; Kallenborn R
    Environ Pollut; 2021 Jul; 280():116935. PubMed ID: 33773302
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Perfluoroalkyl substances in water, sediment, and fish from a subtropical river of China: Environmental behaviors and potential risk.
    Wang S; Cai Y; Ma L; Lin X; Li Q; Li Y; Wang X
    Chemosphere; 2022 Feb; 288(Pt 1):132513. PubMed ID: 34634273
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Concentration and distribution of per- and polyfluoroalkyl substances (PFAS) in the Asan Lake area of South Korea.
    Lee YM; Lee JY; Kim MK; Yang H; Lee JE; Son Y; Kho Y; Choi K; Zoh KD
    J Hazard Mater; 2020 Jan; 381():120909. PubMed ID: 31352148
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Elucidating degradation mechanisms for a range of per- and polyfluoroalkyl substances (PFAS) via controlled irradiation studies.
    Patch D; O'Connor N; Koch I; Cresswell T; Hughes C; Davies JB; Scott J; O'Carroll D; Weber K
    Sci Total Environ; 2022 Aug; 832():154941. PubMed ID: 35367256
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Per- and polyfluoroalkyl substances (PFAS) in river discharge: Modeling loads upstream and downstream of a PFAS manufacturing plant in the Cape Fear watershed, North Carolina.
    Pétré MA; Salk KR; Stapleton HM; Ferguson PL; Tait G; Obenour DR; Knappe DRU; Genereux DP
    Sci Total Environ; 2022 Jul; 831():154763. PubMed ID: 35339537
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Highly efficient degradation of PFAS and other surfactants in water with atmospheric RAdial plasma (RAP) discharge.
    Saleem M; Tomei G; Beria M; Marotta E; Paradisi C
    Chemosphere; 2022 Nov; 307(Pt 2):135800. PubMed ID: 35931256
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Perfluoroalkyl substance contamination of the Llobregat River ecosystem (Mediterranean area, NE Spain).
    Campo J; Pérez F; Masiá A; Picó Y; Farré Ml; Barceló D
    Sci Total Environ; 2015 Jan; 503-504():48-57. PubMed ID: 24935262
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Distribution and fate of perfluoroalkyl substances in Mediterranean Spanish sewage treatment plants.
    Campo J; Masiá A; Picó Y; Farré M; Barceló D
    Sci Total Environ; 2014 Feb; 472():912-22. PubMed ID: 24342098
    [TBL] [Abstract][Full Text] [Related]  

  • 89. First report of perfluoroalkyl acids (PFAAs) in the Indus Drainage System: Occurrence, source and environmental risk.
    Khan K; Younas M; Zhou Y; Sharif HMA; Li X; Yaseen M; Ibrahim SM; Baninla Y; Cao X; Lu Y
    Environ Res; 2022 Aug; 211():113113. PubMed ID: 35283080
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Exploring the factors that influence the adsorption of anionic PFAS on conventional and emerging adsorbents in aquatic matrices.
    Wu C; Klemes MJ; Trang B; Dichtel WR; Helbling DE
    Water Res; 2020 Sep; 182():115950. PubMed ID: 32604026
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Assessing Human Health Risks from Per- and Polyfluoroalkyl Substance (PFAS)-Impacted Vegetable Consumption: A Tiered Modeling Approach.
    Brown JB; Conder JM; Arblaster JA; Higgins CP
    Environ Sci Technol; 2020 Dec; 54(23):15202-15214. PubMed ID: 33200604
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Per- and polyfluoroalkyl substance (PFAS) exposure assessment in a community exposed to contaminated drinking water, New Hampshire, 2015.
    Daly ER; Chan BP; Talbot EA; Nassif J; Bean C; Cavallo SJ; Metcalf E; Simone K; Woolf AD
    Int J Hyg Environ Health; 2018 Apr; 221(3):569-577. PubMed ID: 29514764
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Occurrence and source identification of perfluoroalkyl acids (PFAAs) in the Metedeconk River Watershed, New Jersey.
    Procopio NA; Karl R; Goodrow SM; Maggio J; Louis JB; Atherholt TB
    Environ Sci Pollut Res Int; 2017 Dec; 24(35):27125-27135. PubMed ID: 28963602
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Multiple pollutants in groundwater near an abandoned Chinese fluorine chemical park: concentrations, correlations and health risk assessments.
    Tang J; Zhu Y; Xiang B; Li Y; Tan T; Xu Y; Li M
    Sci Rep; 2022 Mar; 12(1):3370. PubMed ID: 35232998
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Perfluorinated alkylated substances in the aquatic environment: an Austrian case study.
    Clara M; Gans O; Weiss S; Sanz-Escribano D; Scharf S; Scheffknecht C
    Water Res; 2009 Oct; 43(18):4760-8. PubMed ID: 19700182
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Electrochemical-based approaches for the treatment of forever chemicals: Removal of perfluoroalkyl and polyfluoroalkyl substances (PFAS) from wastewater.
    Sivagami K; Sharma P; Karim AV; Mohanakrishna G; Karthika S; Divyapriya G; Saravanathamizhan R; Kumar AN
    Sci Total Environ; 2023 Feb; 861():160440. PubMed ID: 36436638
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Multiple interactions steered high affinity toward PFAS on ultrathin layered rare-earth hydroxide nanosheets: Remediation performance and molecular-level insights.
    Tan X; Jiang Z; Ding W; Zhang M; Huang Y
    Water Res; 2023 Feb; 230():119558. PubMed ID: 36603309
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Contribution of air-water interface in removing PFAS from drinking water: Adsorption, stability, interaction and machine learning studies.
    Yuan S; Wang X; Jiang Z; Zhang H; Yuan S
    Water Res; 2023 Jun; 236():119947. PubMed ID: 37084575
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Occurrence of per- and polyfluoroalkyl substances in aquatic environments and their removal by advanced oxidation processes.
    Mojiri A; Zhou JL; Ozaki N; KarimiDermani B; Razmi E; Kasmuri N
    Chemosphere; 2023 Jul; 330():138666. PubMed ID: 37068615
    [TBL] [Abstract][Full Text] [Related]  

  • 100. XGBoost model as an efficient machine learning approach for PFAS removal: Effects of material characteristics and operation conditions.
    Karbassiyazdi E; Fattahi F; Yousefi N; Tahmassebi A; Taromi AA; Manzari JZ; Gandomi AH; Altaee A; Razmjou A
    Environ Res; 2022 Dec; 215(Pt 1):114286. PubMed ID: 36096170
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.