These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 35926894)

  • 1. Using Selectively Scaled Molecular Dynamics Simulations to Assess Ligand Poses in RNA Aptamers.
    Liu Y; Frank AT
    J Chem Theory Comput; 2022 Sep; 18(9):5703-5709. PubMed ID: 35926894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations.
    Liu K; Watanabe E; Kokubo H
    J Comput Aided Mol Des; 2017 Feb; 31(2):201-211. PubMed ID: 28074360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the Stability of Ligand Binding Modes to Proteins by Molecular Dynamics Simulations: A Cross-docking Study.
    Liu K; Kokubo H
    J Chem Inf Model; 2017 Oct; 57(10):2514-2522. PubMed ID: 28902511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discrete molecular dynamics distinguishes nativelike binding poses from decoys in difficult targets.
    Proctor EA; Yin S; Tropsha A; Dokholyan NV
    Biophys J; 2012 Jan; 102(1):144-51. PubMed ID: 22225808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the performance of MM/PBSA and MM/GBSA methods. 10. Prediction reliability of binding affinities and binding poses for RNA-ligand complexes.
    Jiang D; Du H; Zhao H; Deng Y; Wu Z; Wang J; Zeng Y; Zhang H; Wang X; Wang E; Hou T; Hsieh CY
    Phys Chem Chem Phys; 2024 Mar; 26(13):10323-10335. PubMed ID: 38501198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Target-specific native/decoy pose classifier improves the accuracy of ligand ranking in the CSAR 2013 benchmark.
    Fourches D; Politi R; Tropsha A
    J Chem Inf Model; 2015 Jan; 55(1):63-71. PubMed ID: 25521713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generative Topographic Mapping of the Docking Conformational Space.
    Horvath D; Marcou G; Varnek A
    Molecules; 2019 Jun; 24(12):. PubMed ID: 31216756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Docking and Scoring with Target-Specific Pose Classifier Succeeds in Native-Like Pose Identification But Not Binding Affinity Prediction in the CSAR 2014 Benchmark Exercise.
    Politi R; Convertino M; Popov K; Dokholyan NV; Tropsha A
    J Chem Inf Model; 2016 Jun; 56(6):1032-41. PubMed ID: 27050767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of Aptamer-Small-Molecule Interactions Using Metastable States from Multiple Independent Molecular Dynamics Simulations.
    Rodríguez Serrano AF; Hsing IM
    J Chem Inf Model; 2022 Oct; 62(19):4799-4809. PubMed ID: 36134737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DeepBSP-a Machine Learning Method for Accurate Prediction of Protein-Ligand Docking Structures.
    Bao J; He X; Zhang JZH
    J Chem Inf Model; 2021 May; 61(5):2231-2240. PubMed ID: 33979150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico design of novel aptamers utilizing a hybrid method of machine learning and genetic algorithm.
    Torkamanian-Afshar M; Nematzadeh S; Tabarzad M; Najafi A; Lanjanian H; Masoudi-Nejad A
    Mol Divers; 2021 Aug; 25(3):1395-1407. PubMed ID: 33554306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational docking simulations of a DNA-aptamer for argininamide and related ligands.
    Albada HB; Golub E; Willner I
    J Comput Aided Mol Des; 2015 Jul; 29(7):643-54. PubMed ID: 25877490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of binding poses to FXR using multi-targeted docking combined with molecular dynamics and enhanced sampling.
    Bhakat S; Åberg E; Söderhjelm P
    J Comput Aided Mol Des; 2018 Jan; 32(1):59-73. PubMed ID: 29052792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Boosted neural networks scoring functions for accurate ligand docking and ranking.
    Ashtawy HM; Mahapatra NR
    J Bioinform Comput Biol; 2018 Apr; 16(2):1850004. PubMed ID: 29495922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of Molecular Dynamics to Expand Docking Program's Exploratory Capabilities and to Evaluate Its Predictions.
    Kasprzak WK; Shapiro BA
    Methods Mol Biol; 2023; 2568():75-101. PubMed ID: 36227563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction, docking study and molecular simulation of 3D DNA aptamers to their targets of endocrine disrupting chemicals.
    Zhang W; Yang F; Ou D; Lin G; Huang A; Liu N; Li P
    J Biomol Struct Dyn; 2019 Oct; 37(16):4274-4282. PubMed ID: 30477404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNAPosers: Machine Learning Classifiers for Ribonucleic Acid-Ligand Poses.
    Chhabra S; Xie J; Frank AT
    J Phys Chem B; 2020 Jun; 124(22):4436-4445. PubMed ID: 32427491
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Escamilla-Gutiérrez A; Ribas-Aparicio RM; Córdova-Espinoza MG; Castelán-Vega JA
    Nucleosides Nucleotides Nucleic Acids; 2021; 40(8):798-807. PubMed ID: 34323642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating the malleability of RNA aptamers.
    Ilgu M; Wang T; Lamm MH; Nilsen-Hamilton M
    Methods; 2013 Sep; 63(2):178-87. PubMed ID: 23535583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RmsdXNA: RMSD prediction of nucleic acid-ligand docking poses using machine-learning method.
    Tan LH; Kwoh CK; Mu Y
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38695120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.