These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 35926960)

  • 1. Self-expandable stent for thrombus removal modeling: Solid or beam finite elements?
    Luraghi G; Bridio S; Migliavacca F; Rodriguez Matas JF
    Med Eng Phys; 2022 Aug; 106():103836. PubMed ID: 35926960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of stent retriever thrombectomy in acute ischemic stroke by finite element analysis.
    Liu R; Jin C; Wang L; Yang Y; Fan Y; Wang W
    Comput Methods Biomech Biomed Engin; 2022 May; 25(7):740-749. PubMed ID: 34792427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the requirements of self-expandable stents for heart valve replacement: Radial force, hoop force and equilibrium.
    Cabrera MS; Oomens CW; Baaijens FP
    J Mech Behav Biomed Mater; 2017 Apr; 68():252-264. PubMed ID: 28219851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element analysis of NiTi self-expandable heart valve stent.
    Salemizadeh Parizi F; Mehrabi R; Karamooz-Ravari MR
    Proc Inst Mech Eng H; 2019 Oct; 233(10):1042-1050. PubMed ID: 31354047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined stent-retriever and aspiration intra-arterial thrombectomy performance for fragmentable blood clots: A proof-of-concept computational study.
    Luraghi G; Bridio S; Lissoni V; Dubini G; Dwivedi A; McCarthy R; Fereidoonnezhad B; McGarry P; Gijsen FJH; Rodriguez Matas JF; Migliavacca F
    J Mech Behav Biomed Mater; 2022 Nov; 135():105462. PubMed ID: 36116343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stent-thrombus interaction and the influence of aspiration on mechanical thrombectomy: evaluation of different stent retrievers in a circulation model.
    Madjidyar J; Hermes J; Freitag-Wolf S; Jansen O
    Neuroradiology; 2015 Aug; 57(8):791-7. PubMed ID: 25903428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Realistic computer modelling of stent retriever thrombectomy: a hybrid finite-element analysis-smoothed particle hydrodynamics model.
    Mousavi J S SM; Faghihi D; Sommer K; Bhurwani MMS; Patel TR; Santo B; Waqas M; Ionita C; Levy EI; Siddiqui AH; Tutino VM
    J R Soc Interface; 2021 Dec; 18(185):20210583. PubMed ID: 34905967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A finite element simulation method to evaluate the crimpability of curved stents.
    Praveen Kumar G; Louis Commillus A; Cui F
    Med Eng Phys; 2019 Dec; 74():162-165. PubMed ID: 31635945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applicability analysis to evaluate credibility of an in silico thrombectomy procedure.
    Luraghi G; Bridio S; Miller C; Hoekstra A; Rodriguez Matas JF; Migliavacca F
    J Biomech; 2021 Sep; 126():110631. PubMed ID: 34298293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microcatheter tracking in thrombectomy procedures: A finite-element simulation study.
    Arrarte Terreros N; Renon S; Zucchelli F; Bridio S; Rodriguez Matas JF; Dubini G; Konduri PR; Koopman MS; van Zwam WH; Yo LSF; Lo RH; Marquering HA; van Bavel E; Majoie CBLM; Migliavacca F; Luraghi G
    Comput Methods Programs Biomed; 2023 Jun; 234():107515. PubMed ID: 37011425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The first virtual patient-specific thrombectomy procedure.
    Luraghi G; Bridio S; Rodriguez Matas JF; Dubini G; Boodt N; Gijsen FJH; van der Lugt A; Fereidoonnezhad B; Moerman KM; McGarry P; Konduri PR; Arrarte Terreros N; Marquering HA; Majoie CBLM; Migliavacca F;
    J Biomech; 2021 Sep; 126():110622. PubMed ID: 34298290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-expanding stent modelling and radial force accuracy.
    Ghriallais RN; Bruzzi M
    Comput Methods Biomech Biomed Engin; 2014; 17(4):318-33. PubMed ID: 22587464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical analysis of crimping and inflation process of balloon-expandable coronary stent using implicit solution.
    Bukala J; Kwiatkowski P; Malachowski J
    Int J Numer Method Biomed Eng; 2017 Dec; 33(12):. PubMed ID: 28425201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applicability assessment of a stent-retriever thrombectomy finite-element model.
    Luraghi G; Rodriguez Matas JF; Dubini G; Berti F; Bridio S; Duffy S; Dwivedi A; McCarthy R; Fereidoonnezhad B; McGarry P; Majoie CBLM; Migliavacca F;
    Interface Focus; 2021 Feb; 11(1):20190123. PubMed ID: 33343873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recommendations for finite element modelling of nickel-titanium stents-Verification and validation activities.
    Bernini M; Hellmuth R; Dunlop C; Ronan W; Vaughan TJ
    PLoS One; 2023; 18(8):e0283492. PubMed ID: 37556457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the importance of modeling stent procedure for predicting arterial mechanics.
    Zhao S; Gu L; Froemming SR
    J Biomech Eng; 2012 Dec; 134(12):121005. PubMed ID: 23363207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A computational optimization study of a self-expandable transcatheter aortic valve.
    Barati S; Fatouraee N; Nabaei M; Berti F; Petrini L; Migliavacca F; Rodriguez Matas JF
    Comput Biol Med; 2021 Dec; 139():104942. PubMed ID: 34700254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental evaluation of stent retrievers' mechanical properties and effectiveness.
    Machi P; Jourdan F; Ambard D; Reynaud C; Lobotesis K; Sanchez M; Bonafé A; Costalat V
    J Neurointerv Surg; 2017 Mar; 9(3):257-263. PubMed ID: 27016318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and evaluation of the crimping of a hooked self-expandable caval valve stent for the treatment of tricuspid regurgitation.
    Praveen Kumar G; Liang Leo H; Cui F
    Comput Methods Biomech Biomed Engin; 2019 Apr; 22(5):533-546. PubMed ID: 30773049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A low dimensional surrogate model for a fast estimation of strain in the thrombus during a thrombectomy procedure.
    Bridio S; Luraghi G; Migliavacca F; Pant S; García-González A; Rodriguez Matas JF
    J Mech Behav Biomed Mater; 2023 Jan; 137():105577. PubMed ID: 36410165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.