BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 35927290)

  • 1. FIVES: A Fundus Image Dataset for Artificial Intelligence based Vessel Segmentation.
    Jin K; Huang X; Zhou J; Li Y; Yan Y; Sun Y; Zhang Q; Wang Y; Ye J
    Sci Data; 2022 Aug; 9(1):475. PubMed ID: 35927290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artery vein classification in fundus images using serially connected U-Nets.
    Karlsson RA; Hardarson SH
    Comput Methods Programs Biomed; 2022 Apr; 216():106650. PubMed ID: 35139461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-path cascaded U-net for vessel segmentation from fundus fluorescein angiography sequential images.
    Sun G; Liu X; Yu X
    Comput Methods Programs Biomed; 2021 Nov; 211():106422. PubMed ID: 34598080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Particle swarm optimization method for small retinal vessels detection on multiresolution fundus images.
    Khomri B; Christodoulidis A; Djerou L; Babahenini MC; Cheriet F
    J Biomed Opt; 2018 May; 23(5):1-13. PubMed ID: 29749141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iterative Vessel Segmentation of Fundus Images.
    Roychowdhury S; Koozekanani DD; Parhi KK
    IEEE Trans Biomed Eng; 2015 Jul; 62(7):1738-49. PubMed ID: 25700436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [New Approach of Fundus Image Segmentation Evaluation Based on Topology Structure].
    Sheng H; Dai P; Liu Z; Zhang-Wen M; Zhao Y; Fan M
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2015 Oct; 32(5):1100-5. PubMed ID: 26964319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactive Blood Vessel Segmentation from Retinal Fundus Image Based on Canny Edge Detector.
    Ooi AZH; Embong Z; Abd Hamid AI; Zainon R; Wang SL; Ng TF; Hamzah RA; Teoh SS; Ibrahim H
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new robust method for blood vessel segmentation in retinal fundus images based on weighted line detector and hidden Markov model.
    Zhou C; Zhang X; Chen H
    Comput Methods Programs Biomed; 2020 Apr; 187():105231. PubMed ID: 31786454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MINet: Multi-scale input network for fundus microvascular segmentation.
    Li X; Song J; Jiao W; Zheng Y
    Comput Biol Med; 2023 Mar; 154():106608. PubMed ID: 36731364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blood Vessel Segmentation of Fundus Images by Major Vessel Extraction and Subimage Classification.
    Roychowdhury S; Koozekanani DD; Parhi KK
    IEEE J Biomed Health Inform; 2015 May; 19(3):1118-28. PubMed ID: 25014980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blood Vessel Segmentation of Fundus Retinal Images Based on Improved Frangi and Mathematical Morphology.
    Tian F; Li Y; Wang J; Chen W
    Comput Math Methods Med; 2021; 2021():4761517. PubMed ID: 34122614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A location-to-segmentation strategy for automatic exudate segmentation in colour retinal fundus images.
    Liu Q; Zou B; Chen J; Ke W; Yue K; Chen Z; Zhao G
    Comput Med Imaging Graph; 2017 Jan; 55():78-86. PubMed ID: 27665058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wave-Net: A lightweight deep network for retinal vessel segmentation from fundus images.
    Liu Y; Shen J; Yang L; Yu H; Bian G
    Comput Biol Med; 2023 Jan; 152():106341. PubMed ID: 36463794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural Networks Application for Accurate Retina Vessel Segmentation from OCT Fundus Reconstruction.
    Marciniak T; Stankiewicz A; Zaradzki P
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-proportion channel ensemble model for retinal vessel segmentation.
    Tang P; Liang Q; Yan X; Zhang D; Coppola G; Sun W
    Comput Biol Med; 2019 Aug; 111():103352. PubMed ID: 31301636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Segmenting retinal vessels with revised top-bottom-hat transformation and flattening of minimum circumscribed ellipse.
    Wang W; Wang W; Hu Z
    Med Biol Eng Comput; 2019 Jul; 57(7):1481-1496. PubMed ID: 30903529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Multi-Scale Directional Line Detector for Retinal Vessel Segmentation.
    Khawaja A; Khan TM; Khan MAU; Nawaz SJ
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31766276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthetic OCT-A blood vessel maps using fundus images and generative adversarial networks.
    Coronado I; Pachade S; Trucco E; Abdelkhaleq R; Yan J; Salazar-Marioni S; Jagolino-Cole A; Bahrainian M; Channa R; Sheth SA; Giancardo L
    Sci Rep; 2023 Sep; 13(1):15325. PubMed ID: 37714881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LUNet: deep learning for the segmentation of arterioles and venules in high resolution fundus images.
    Fhima J; Van Eijgen J; Billen Moulin-Romsée MI; Brackenier H; Kulenovic H; Debeuf V; Vangilbergen M; Freiman M; Stalmans I; Behar JA
    Physiol Meas; 2024 May; 45(5):. PubMed ID: 38599224
    [No Abstract]   [Full Text] [Related]  

  • 20. Assessing fairness in performance evaluation of publicly available retinal blood vessel segmentation algorithms.
    Dharmawan DA
    J Med Eng Technol; 2021 Jul; 45(5):351-360. PubMed ID: 33843422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.