These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 35927331)

  • 1. An ultra-wideband origami microwave absorber.
    Biswas A; Zekios CL; Ynchausti C; Howell LL; Magleby SP; Georgakopoulos SV
    Sci Rep; 2022 Aug; 12(1):13449. PubMed ID: 35927331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward an Ultra-Wideband Hybrid Metamaterial Based Microwave Absorber.
    El Assal A; Breiss H; Benzerga R; Sharaiha A; Jrad A; Harmouch A
    Micromachines (Basel); 2020 Oct; 11(10):. PubMed ID: 33066167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultra-Wideband and Wide-Angle Microwave Metamaterial Absorber.
    Begaud X; Lepage AC; Varault S; Soiron M; Barka A
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30347784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultra-wideband and Polarization-Insensitive Perfect Absorber Using Multilayer Metamaterials, Lumped Resistors, and Strong Coupling Effects.
    Li SJ; Wu PX; Xu HX; Zhou YL; Cao XY; Han JF; Zhang C; Yang HH; Zhang Z
    Nanoscale Res Lett; 2018 Nov; 13(1):386. PubMed ID: 30498863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transparent and ultra-wideband metamaterial absorber using coupled hexagonal combined elements.
    Jiang H; Yang W; Lei S; Hu H; Chen B; Bao Y; He Z
    Opt Express; 2021 Aug; 29(18):29439-29448. PubMed ID: 34615053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. UWB Frequency-Selective Surface Absorber Based on Graphene Featuring Wide-Angle Stability.
    Wang Z; Huang J; Sun D; Zeng Q; Song M; Denidni TA
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Causal optimal and optically transparent ultra-wideband microwave metamaterials absorber with high angular stability.
    Li J; Shi L; Chen H; Qu L; Yi Y; Zhang Q; Ma Y; Wang J
    Opt Express; 2023 Dec; 31(26):44385-44400. PubMed ID: 38178511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconfigurable Origami/Kirigami Metamaterial Absorbers Developed by Fast Inverse Design and Low-Concentration MXene Inks.
    Li C; Wang G; Peng M; Liu C; Feng T; Wang Y; Qin F
    ACS Appl Mater Interfaces; 2024 Aug; 16(32):42448-42460. PubMed ID: 39078617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays.
    Yin X; Long C; Li J; Zhu H; Chen L; Guan J; Li X
    Sci Rep; 2015 Oct; 5():15367. PubMed ID: 26477740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-Wideband Flexible Absorber in Microwave Frequency Band.
    Fan S; Song Y
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33143266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and Fabrication of a Multi-Layer Planar Solar Light Absorber Achieving High Absorptivity and Ultra-Wideband Response from Visible Light to Infrared.
    Yang CF; Wang CH; Ke PX; Meen TH; Lai KK
    Nanomaterials (Basel); 2024 May; 14(11):. PubMed ID: 38869555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible Ultra-Wideband Terahertz Absorber Based on Vertically Aligned Carbon Nanotubes.
    Xiao D; Zhu M; Sun L; Zhao C; Wang Y; Tong Teo EH; Hu F; Tu L
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):43671-43680. PubMed ID: 31640338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Origami-based microwave absorber with a reconfigurable bandwidth.
    Chen X; Li W; Wu Z; Zhang Z; Zou Y
    Opt Lett; 2021 Mar; 46(6):1349-1352. PubMed ID: 33720184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of an electromagnetic metallic metamaterial absorber for terahertz applications.
    Elkorany AS; Saeed FS; Hassan AA; Saleeb DAA
    Sci Rep; 2023 Dec; 13(1):22032. PubMed ID: 38086899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultra-light planar meta-absorber with wideband and full-polarization properties.
    Du Z; Liang J; Cai T; Wang X; Zhang Q; Deng T; Wu B; Mao R; Wang D
    Opt Express; 2021 Mar; 29(5):6434-6444. PubMed ID: 33726164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrabroadband and >93% Microwave Absorption Enabled by "Doped" Water Meta-Atom Lattice with Subwavelength Thickness.
    Qin J; Shi Y; Jiang S; Gao Y; Yao S; Wang Z; Cheng X; Tsai DP; Zhang W; Zhu W
    Adv Mater; 2024 Oct; ():e2411153. PubMed ID: 39410731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Origami metamaterials for ultra-wideband and large-depth reflection modulation.
    Song Z; Zhu JF; Wang X; Zhang R; Min P; Cao W; He Y; Han J; Wang T; Zhu J; Wu L; Qiu CW
    Nat Commun; 2024 Apr; 15(1):3181. PubMed ID: 38609351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metamaterial ultra-wideband solar absorbers based on a multi-layer structure with cross etching.
    Sun P; Feng H; Su L; Nie S; Li X; Zhou Y; Ran L; Gao Y
    Phys Chem Chem Phys; 2023 Apr; 25(14):10136-10142. PubMed ID: 36974981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transparent ultra-wideband double-resonance-layer metamaterial absorber designed by a semiempirical optimization method.
    Li H; Dong H; Zhang Y; Mou N; Xin Y; Deng R; Zhang L
    Opt Express; 2021 Jun; 29(12):18446-18457. PubMed ID: 34154100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadband and thin magnetic absorber with non-Foster metasurface for admittance matching.
    Mou J; Shen Z
    Sci Rep; 2017 Jul; 7(1):6922. PubMed ID: 28761154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.