These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 35927400)

  • 41. Enhanced phosphate scavenging with effective recovery by magnetic porous biochar supported La(OH)
    Zhang Y; Akindolie MS; Tian X; Wu B; Hu Q; Jiang Z; Wang L; Tao Y; Cao B; Qu J
    Bioresour Technol; 2021 Jan; 319():124232. PubMed ID: 33254456
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nano La(OH)
    Liu L; Lu Y; Du M; Chen Q; Yan H; Lin Y
    J Environ Manage; 2024 Apr; 356():120502. PubMed ID: 38479281
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Adsorption behavior and mechanism of Cr(VI) by modified biochar derived from Enteromorpha prolifera.
    Chen Y; Wang B; Xin J; Sun P; Wu D
    Ecotoxicol Environ Saf; 2018 Nov; 164():440-447. PubMed ID: 30144704
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Synthesis of a novel magnetic
    Cui Q; Jiao G; Zheng J; Wang T; Wu G; Li G
    RSC Adv; 2019 Jun; 9(32):18641-18651. PubMed ID: 35515233
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Application of Box-Behnken design and desirability function in the optimization of Cd(II) removal from aqueous solution using poly(o-phenylenediamine)/hydrous zirconium oxide composite: equilibrium modeling, kinetic and thermodynamic studies.
    Rahman N; Nasir M
    Environ Sci Pollut Res Int; 2018 Sep; 25(26):26114-26134. PubMed ID: 29971743
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Antimony(V) removal from water by iron-zirconium bimetal oxide: performance and mechanism.
    Li X; Dou X; Li J
    J Environ Sci (China); 2012; 24(7):1197-203. PubMed ID: 23513439
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phosphorus recovery by core-shell γ-Al
    Cui Q; Xu J; Wang W; Tan L; Cui Y; Wang T; Li G; She D; Zheng J
    Sci Total Environ; 2020 Aug; 729():138892. PubMed ID: 32360908
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Properties and adsorption mechanism of magnetic biochar modified with molybdenum disulfide for cadmium in aqueous solution.
    Khan ZH; Gao M; Qiu W; Song Z
    Chemosphere; 2020 Sep; 255():126995. PubMed ID: 32416394
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Fabrication of a Biomass-Based Hydrous Zirconium Oxide Nanocomposite for Advanced Phosphate Removal].
    Qiu H; Qin ZF; Liu FL; Liang C; Song MX; Xu ZW; Guan YD
    Huan Jing Ke Xue; 2018 Mar; 39(3):1212-1219. PubMed ID: 29965466
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A novel, efficient and sustainable magnetic sludge biochar modified by graphene oxide for environmental concentration imidacloprid removal.
    Ma Y; Wu L; Li P; Yang L; He L; Chen S; Yang Y; Gao F; Qi X; Zhang Z
    J Hazard Mater; 2021 Apr; 407():124777. PubMed ID: 33338812
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Environmental-friendly coal gangue-biochar composites reclaiming phosphate from water as a slow-release fertilizer.
    Wang B; Ma Y; Lee X; Wu P; Liu F; Zhang X; Li L; Chen M
    Sci Total Environ; 2021 Mar; 758():143664. PubMed ID: 33288263
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Production and characterization of cost-effective magnetic pine bark biochar and its application to remove tetracycline from water.
    Ryenchindorj U; Zaib Q; Putra AS; Park HS
    Environ Sci Pollut Res Int; 2022 Sep; 29(41):62382-62392. PubMed ID: 35397033
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Phosphogypsum as a novel modifier for distillers grains biochar removal of phosphate from water.
    Wang B; Lian G; Lee X; Gao B; Li L; Liu T; Zhang X; Zheng Y
    Chemosphere; 2020 Jan; 238():124684. PubMed ID: 31524621
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Highly efficient P uptake by Fe
    Liu C; Wang Y; Li X; Li J; Dong S; Hao H; Tong Y; Zhou Y
    J Environ Sci (China); 2022 Oct; 120():18-29. PubMed ID: 35623769
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Removal of trace arsenic(V) and phosphate from water by a highly selective ligand exchange adsorbent.
    Awual MR; El-Safty SA; Jyo A
    J Environ Sci (China); 2011; 23(12):1947-54. PubMed ID: 22432323
    [TBL] [Abstract][Full Text] [Related]  

  • 56. High efficiency removal of phosphate from water by zirconium sulfate-surfactant micelle mesostructure immobilized on polymer matrix.
    Pitakteeratham N; Hafuka A; Satoh H; Watanabe Y
    Water Res; 2013 Jul; 47(11):3583-90. PubMed ID: 23726694
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Porous MgO-modified biochar adsorbents fabricated by the activation of Mg(NO
    Liang H; Wang W; Liu H; Deng X; Zhang D; Zou Y; Ruan X
    Chemosphere; 2023 May; 324():138320. PubMed ID: 36905997
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhanced fluoride adsorption from aqueous solution by zirconium (IV)-impregnated magnetic chitosan graphene oxide.
    Liu M; Zang Z; Zhang S; Ouyang G; Han R
    Int J Biol Macromol; 2021 Jul; 182():1759-1768. PubMed ID: 34048839
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pyridinium-functionalized magnetic mesoporous silica nanoparticles as a reusable adsorbent for phosphate removal from aqueous solution.
    Ma F; Du H; Li R; Zhang Z
    Water Sci Technol; 2016; 74(5):1127-35. PubMed ID: 27642832
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Efficient removal of phosphate from aqueous media using magnetic bimetallic lanthanum‑iron-modified sulfonylmethylated lignin biochar.
    Cui R; Ma J; Jiao G; Sun R
    Int J Biol Macromol; 2023 Aug; 247():125809. PubMed ID: 37453645
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.