These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 35927446)

  • 1. Including state-of-the-art physical understanding of thermal vacancies in Calphad models.
    Obaied A; Roslyakova I; To Baben M
    Sci Rep; 2022 Aug; 12(1):13385. PubMed ID: 35927446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Thermal Vacancy on Thermodynamic Behaviors in BCC W Close to Melting Point: A Thermodynamic Study.
    Tang Y; Zhang L
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30205442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On Gibbs Energy for the Metastable bcc_A2 Phase with a Thermal Vacancy in Metals and Alloys.
    Tang Y; Zhang L
    Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30658507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamic description of metastable fcc/liquid phase equilibria and solidification kinetics in Al-Cu alloys.
    Fang Y; Galenko PK; Liu D; Hack K; Rettenmayr M; Lippmann S
    Philos Trans A Math Phys Eng Sci; 2022 Feb; 380(2217):20200327. PubMed ID: 34974731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ab initio lattice stability of fcc and hcp Fe-Mn random alloys.
    Gebhardt T; Music D; Hallstedt B; Ekholm M; Abrikosov IA; Vitos L; Schneider JM
    J Phys Condens Matter; 2010 Jul; 22(29):295402. PubMed ID: 21399304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gibbs energy functions with the vacancy complexes in the Al-Cu binary system.
    Abe T; Shimono M; Hashimoto K; Kocer C
    Data Brief; 2018 Dec; 21():432-440. PubMed ID: 30364806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. About the Reliability of CALPHAD Predictions in Multicomponent Systems.
    Gorsse S; Senkov ON
    Entropy (Basel); 2018 Nov; 20(12):. PubMed ID: 33266623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implementation of an Effective Bond Energy Formalism in the Multicomponent Calphad Approach.
    Dupin N; Kattner UR; Sundman B; Palumbo M; Fries SG
    J Res Natl Inst Stand Technol; 2018; 123():1-33. PubMed ID: 34877147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Configurational Entropy in Multicomponent Alloys: Matrix Formulation from Ab Initio Based Hamiltonian and Application to the FCC Cr-Fe-Mn-Ni System.
    Fernández-Caballero A; Fedorov M; Wróbel JS; Mummery PM; Nguyen-Manh D
    Entropy (Basel); 2019 Jan; 21(1):. PubMed ID: 33266784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High Entropy and Sluggish Diffusion "Core" Effects in Senary FCC Al-Co-Cr-Fe-Ni-Mn Alloys.
    Mehta A; Sohn Y
    ACS Comb Sci; 2020 Dec; 22(12):757-767. PubMed ID: 33074648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enthalpies of formation of Cd-Pr intermetallic compounds and thermodynamic assessment of the Cd-Pr system.
    Reichmann TL; Richter KW; Delsante S; Borzone G; Ipser H
    CALPHAD; 2014 Dec; 47():56-62. PubMed ID: 25540475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput materials screening algorithm based on first-principles density functional theory and artificial neural network for high-entropy alloys.
    Rittiruam M; Noppakhun J; Setasuban S; Aumnongpho N; Sriwattana A; Boonchuay S; Saelee T; Wangphon C; Ektarawong A; Chammingkwan P; Taniike T; Praserthdam S; Praserthdam P
    Sci Rep; 2022 Oct; 12(1):16653. PubMed ID: 36198732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A first-principles model for anomalous segregation in dilute ternary tungsten-rhenium-vacancy alloys.
    Wróbel JS; Nguyen-Manh D; Kurzydłowski KJ; Dudarev SL
    J Phys Condens Matter; 2017 Apr; 29(14):145403. PubMed ID: 28177296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of bcc and fcc during the coalescence of free and supported Fe and Ni clusters.
    Li G; Wang Q; Sui X; Wang K; Wu C; He J
    Phys Chem Chem Phys; 2015 Sep; 17(33):21729-39. PubMed ID: 26234423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molybdenum at high pressure and temperature: melting from another solid phase.
    Belonoshko AB; Burakovsky L; Chen SP; Johansson B; Mikhaylushkin AS; Preston DL; Simak SI; Swift DC
    Phys Rev Lett; 2008 Apr; 100(13):135701. PubMed ID: 18517968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Combined Experimental and First-Principles Based Assessment of Finite-Temperature Thermodynamic Properties of Intermetallic Al
    Gupta A; Tas B; Korbmacher D; Dutta B; Neitzel Y; Grabowski B; Hickel T; Esin V; Divinski SV; Wilde G; Neugebauer J
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33917269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vacancy mobility and interaction with transition metal solutes in Ni.
    Schuwalow S; Rogal J; Drautz R
    J Phys Condens Matter; 2014 Dec; 26(48):485014. PubMed ID: 25388216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a solute and defect concentration dependant Ising model for the study of transmutation induced segregation in neutron irradiated W-(Re, Os) systems.
    Lloyd MJ; Martinez E; Messina L; Nguyen-Manh D
    J Phys Condens Matter; 2021 Sep; 33(47):. PubMed ID: 34407520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microstructure, Phase Formation and Heat-Treating of Novel Cast Al-Mg-Zn-Cu-Si Lightweight Complex Concentrated Aluminum Based Alloy.
    Chaskis S; Stachouli E; Gavalas E; Bouzouni M; Papaefthymiou S
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The EXP pair-potential system. III. Thermodynamic phase diagram.
    Pedersen UR; Bacher AK; Schrøder TB; Dyre JC
    J Chem Phys; 2019 May; 150(17):174501. PubMed ID: 31067860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.