These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 35927611)

  • 1. A deep learning framework for identifying essential proteins based on multiple biological information.
    Yue Y; Ye C; Peng PY; Zhai HX; Ahmad I; Xia C; Wu YZ; Zhang YH
    BMC Bioinformatics; 2022 Aug; 23(1):318. PubMed ID: 35927611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Deep Learning Framework for Identifying Essential Proteins by Integrating Multiple Types of Biological Information.
    Zeng M; Li M; Fei Z; Wu FX; Li Y; Pan Y; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(1):296-305. PubMed ID: 30736002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DeepEP: a deep learning framework for identifying essential proteins.
    Zeng M; Li M; Wu FX; Li Y; Pan Y
    BMC Bioinformatics; 2019 Dec; 20(Suppl 16):506. PubMed ID: 31787076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DeepHE: Accurately predicting human essential genes based on deep learning.
    Zhang X; Xiao W; Xiao W
    PLoS Comput Biol; 2020 Sep; 16(9):e1008229. PubMed ID: 32936825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying essential proteins based on sub-network partition and prioritization by integrating subcellular localization information.
    Li M; Li W; Wu FX; Pan Y; Wang J
    J Theor Biol; 2018 Jun; 447():65-73. PubMed ID: 29571709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ECDEP: identifying essential proteins based on evolutionary community discovery and subcellular localization.
    Ye C; Wu Q; Chen S; Zhang X; Xu W; Wu Y; Zhang Y; Yue Y
    BMC Genomics; 2024 Jan; 25(1):117. PubMed ID: 38279081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new method for the discovery of essential proteins.
    Zhang X; Xu J; Xiao WX
    PLoS One; 2013; 8(3):e58763. PubMed ID: 23555595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An iteration model for identifying essential proteins by combining comprehensive PPI network with biological information.
    Li S; Zhang Z; Li X; Tan Y; Wang L; Chen Z
    BMC Bioinformatics; 2021 Sep; 22(1):430. PubMed ID: 34496745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Completing sparse and disconnected protein-protein network by deep learning.
    Huang L; Liao L; Wu CH
    BMC Bioinformatics; 2018 Mar; 19(1):103. PubMed ID: 29566671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of essential proteins based on subcellular localization and gene expression correlation.
    Fan Y; Tang X; Hu X; Wu W; Ping Q
    BMC Bioinformatics; 2017 Dec; 18(Suppl 13):470. PubMed ID: 29219067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Essential Protein Prediction Based on node2vec and XGBoost.
    Wang N; Zeng M; Li Y; Wu FX; Li M
    J Comput Biol; 2021 Jul; 28(7):687-700. PubMed ID: 34152838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting Essential Proteins Based on Integration of Local Fuzzy Fractal Dimension and Subcellular Location Information.
    Shen L; Zhang J; Wang F; Liu K
    Genes (Basel); 2022 Jan; 13(2):. PubMed ID: 35205217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An integrated method for identifying essential proteins from multiplex network model of protein-protein interactions.
    Athira K; Gopakumar G
    J Bioinform Comput Biol; 2020 Aug; 18(4):2050020. PubMed ID: 32795133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying essential proteins from active PPI networks constructed with dynamic gene expression.
    Xiao Q; Wang J; Peng X; Wu FX; Pan Y
    BMC Genomics; 2015; 16 Suppl 3(Suppl 3):S1. PubMed ID: 25707432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new computational strategy for identifying essential proteins based on network topological properties and biological information.
    Qin C; Sun Y; Dong Y
    PLoS One; 2017; 12(7):e0182031. PubMed ID: 28753682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DeepLncLoc: a deep learning framework for long non-coding RNA subcellular localization prediction based on subsequence embedding.
    Zeng M; Wu Y; Lu C; Zhang F; Wu FX; Li M
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34498677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Deep Learning Framework for Gene Ontology Annotations With Sequence- and Network-Based Information.
    Zhang F; Song H; Zeng M; Wu FX; Li Y; Pan Y; Li M
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2208-2217. PubMed ID: 31985440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Topology Potential-Based Method for Identifying Essential Proteins from PPI Networks.
    Li M; Lu Y; Wang J; Wu FX; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(2):372-83. PubMed ID: 26357224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting Essential Proteins by Integrating Network Topology, Subcellular Localization Information, Gene Expression Profile and GO Annotation Data.
    Zhang W; Xu J; Zou X
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(6):2053-2061. PubMed ID: 31095490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DualNetGO: a dual network model for protein function prediction via effective feature selection.
    Chen Z; Luo Q
    Bioinformatics; 2024 Jul; 40(7):. PubMed ID: 38963311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.