These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. Skene PJ; Henikoff S Elife; 2017 Jan; 6():. PubMed ID: 28079019 [TBL] [Abstract][Full Text] [Related]
5. CUT&RUN Profiling of the Budding Yeast Epigenome. Brahma S; Henikoff S Methods Mol Biol; 2022; 2477():129-147. PubMed ID: 35524116 [TBL] [Abstract][Full Text] [Related]
6. Single-Cell Factor Localization on Chromatin using Ultra-Low Input Cleavage Under Targets and Release using Nuclease. Lardo SM; Hainer SJ J Vis Exp; 2022 Feb; (180):. PubMed ID: 35188122 [TBL] [Abstract][Full Text] [Related]
7. Summary of ChIP-Seq Methods and Description of an Optimized ChIP-Seq Protocol. Fadri MTM; Lee JB; Keung AJ Methods Mol Biol; 2024; 2842():419-447. PubMed ID: 39012609 [TBL] [Abstract][Full Text] [Related]
8. Cleavage Under Targets and Release Using Nuclease (CUT&RUN) of Epigenetic Regulators. McCray AD; Wang X Methods Mol Biol; 2024; 2846():169-179. PubMed ID: 39141236 [TBL] [Abstract][Full Text] [Related]
9. CUT&RUN for Chromatin Profiling in Caenorhabditis elegans. Emerson FJ; Lee SS Curr Protoc; 2022 Jun; 2(6):e445. PubMed ID: 35714350 [TBL] [Abstract][Full Text] [Related]
10. Protocol for fractionation-assisted native ChIP (fanChIP) to capture protein-protein/DNA interactions on chromatin. Miyamoto R; Yokoyama A STAR Protoc; 2021 Jun; 2(2):100404. PubMed ID: 33855306 [TBL] [Abstract][Full Text] [Related]
11. A simple method for generating high-resolution maps of genome-wide protein binding. Skene PJ; Henikoff S Elife; 2015 Jun; 4():e09225. PubMed ID: 26079792 [TBL] [Abstract][Full Text] [Related]
12. Cleavage Under Targets and Release Using Nuclease (CUT&RUN) in Macrophages. Babl A; Greulich F Methods Mol Biol; 2024; 2846():151-167. PubMed ID: 39141235 [TBL] [Abstract][Full Text] [Related]
13. An optimized chromatin immunoprecipitation protocol using Staph-seq for analyzing genome-wide protein-DNA interactions. Tao F; Rhonda E; He X; Perry JM; Li L STAR Protoc; 2022 Dec; 3(4):101918. PubMed ID: 36595937 [TBL] [Abstract][Full Text] [Related]
14. Protocol for using heterologous spike-ins to normalize for technical variation in chromatin immunoprecipitation. Greulich F; Mechtidou A; Horn T; Uhlenhaut NH STAR Protoc; 2021 Sep; 2(3):100609. PubMed ID: 34189474 [TBL] [Abstract][Full Text] [Related]
15. High-Resolution ChIP-MNase Mapping of Nucleosome Positions at Selected Genomic Loci and Alleles. van Essen D; Oruba A; Saccani S Methods Mol Biol; 2021; 2351():123-145. PubMed ID: 34382187 [TBL] [Abstract][Full Text] [Related]
16. An optimized protocol for chromatin immunoprecipitation from murine inguinal white adipose tissue. Katsouda A; Valakos D; Vatsellas G; Thanos D; Papapetropoulos A STAR Protoc; 2023 Dec; 4(4):102594. PubMed ID: 37742172 [TBL] [Abstract][Full Text] [Related]
17. Genome-wide analysis of chromatin structures in Trypanosoma brucei using high-resolution MNase-ChIP-seq. Wedel C; Siegel TN Exp Parasitol; 2017 Sep; 180():2-12. PubMed ID: 28286326 [TBL] [Abstract][Full Text] [Related]
18. Characterization of the Nucleosome Landscape by Micrococcal Nuclease-Sequencing (MNase-seq). Hoeijmakers WAM; Bártfai R Methods Mol Biol; 2018; 1689():83-101. PubMed ID: 29027167 [TBL] [Abstract][Full Text] [Related]
19. Lamin ChIP from Chromatin Prepared by Micrococcal Nuclease Digestion. Duband-Goulet I Methods Mol Biol; 2016; 1411():325-39. PubMed ID: 27147052 [TBL] [Abstract][Full Text] [Related]
20. Chromatin Profiling of Human Naïve Pluripotent Stem Cells. Bendall A; Semprich CI Methods Mol Biol; 2022; 2416():181-200. PubMed ID: 34870837 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]