These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 35928831)

  • 41. Brain activity and connectivity changes in response to nutritive natural sugars, non-nutritive natural sugar replacements and artificial sweeteners.
    Van Opstal AM; Hafkemeijer A; van den Berg-Huysmans AA; Hoeksma M; Mulder TPJ; Pijl H; Rombouts SARB; van der Grond J
    Nutr Neurosci; 2021 May; 24(5):395-405. PubMed ID: 31288630
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of three intense sweeteners on fat storage in the C. elegans model.
    Zheng J; Greenway FL; Heymsfield SB; Johnson WD; King JF; King MJ; Gao C; Chu YF; Finley JW
    Chem Biol Interact; 2014 May; 215():1-6. PubMed ID: 24632416
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparison of different input modalities and network structures for deep learning-based seizure detection.
    Cho KO; Jang HJ
    Sci Rep; 2020 Jan; 10(1):122. PubMed ID: 31924842
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of different sweeteners on behavior and neurotransmitters release in mice.
    Yin KJ; Xie DY; Zhao L; Fan G; Ren JN; Zhang LL; Pan SY
    J Food Sci Technol; 2020 Jan; 57(1):113-121. PubMed ID: 31975714
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Consumer acceptance of natural sweeteners in protein beverages.
    Parker MN; Lopetcharat K; Drake MA
    J Dairy Sci; 2018 Oct; 101(10):8875-8889. PubMed ID: 30055918
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The basolateral nucleus of the amygdala mediates caloric sugar preference over a non-caloric sweetener in mice.
    Yasoshima Y; Yoshizawa H; Shimura T; Miyamoto T
    Neuroscience; 2015 Apr; 291():203-15. PubMed ID: 25684750
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sucrose activates human taste pathways differently from artificial sweetener.
    Frank GK; Oberndorfer TA; Simmons AN; Paulus MP; Fudge JL; Yang TT; Kaye WH
    Neuroimage; 2008 Feb; 39(4):1559-69. PubMed ID: 18096409
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The sensory properties and metabolic impact of natural and synthetic sweeteners.
    Mora MR; Dando R
    Compr Rev Food Sci Food Saf; 2021 Mar; 20(2):1554-1583. PubMed ID: 33580569
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Simplified CNN Classification Method for MI-EEG via the Electrode Pairs Signals.
    Lun X; Yu Z; Chen T; Wang F; Hou Y
    Front Hum Neurosci; 2020; 14():338. PubMed ID: 33100985
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sucrose replacement in high ratio white layer cakes.
    Miller RA; Dann OE; Oakley AR; Angermayer ME; Brackebusch KH
    J Sci Food Agric; 2017 Aug; 97(10):3228-3232. PubMed ID: 27925212
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Convolutional neural networks for decoding electroencephalography responses and visualizing trial by trial changes in discriminant features.
    Aellen FM; Göktepe-Kavis P; Apostolopoulos S; Tzovara A
    J Neurosci Methods; 2021 Dec; 364():109367. PubMed ID: 34563599
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Artificial sweeteners: safe or unsafe?
    Qurrat-ul-Ain ; Khan SA
    J Pak Med Assoc; 2015 Feb; 65(2):225-7. PubMed ID: 25842566
    [TBL] [Abstract][Full Text] [Related]  

  • 53. TRCA-Net: using TRCA filters to boost the SSVEP classification with convolutional neural network.
    Deng Y; Sun Q; Wang C; Wang Y; Zhou SK
    J Neural Eng; 2023 Jul; 20(4):. PubMed ID: 37399806
    [No Abstract]   [Full Text] [Related]  

  • 54. Orthogonal convolutional neural networks for automatic sleep stage classification based on single-channel EEG.
    Zhang J; Yao R; Ge W; Gao J
    Comput Methods Programs Biomed; 2020 Jan; 183():105089. PubMed ID: 31586788
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A semi-supervised learning method of latent features based on convolutional neural networks for CT metal artifact reduction.
    Shi Z; Wang N; Kong F; Cao H; Cao Q
    Med Phys; 2022 Jun; 49(6):3845-3859. PubMed ID: 35322430
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Automatic Sleep Stage Classification Using Temporal Convolutional Neural Network and New Data Augmentation Technique from Raw Single-Channel EEG.
    Khalili E; Mohammadzadeh Asl B
    Comput Methods Programs Biomed; 2021 Jun; 204():106063. PubMed ID: 33823315
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dietary intake of four artificial sweeteners by Irish pre-school children.
    Martyn DM; Nugent AP; McNulty BA; O'Reilly E; Tlustos C; Walton J; Flynn A; Gibney MJ
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2016; 33(4):592-602. PubMed ID: 26939625
    [TBL] [Abstract][Full Text] [Related]  

  • 58. EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces.
    Lawhern VJ; Solon AJ; Waytowich NR; Gordon SM; Hung CP; Lance BJ
    J Neural Eng; 2018 Oct; 15(5):056013. PubMed ID: 29932424
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Feature Classification Method of Resting-State EEG Signals From Amnestic Mild Cognitive Impairment With Type 2 Diabetes Mellitus Based on Multi-View Convolutional Neural Network.
    Wen D; Li P; Zhou Y; Sun Y; Xu J; Liu Y; Li X; Li J; Bian Z; Wang L
    IEEE Trans Neural Syst Rehabil Eng; 2020 Aug; 28(8):1702-1709. PubMed ID: 32746302
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Low-calorie sweetener use and energy balance: Results from experimental studies in animals, and large-scale prospective studies in humans.
    Fowler SPG
    Physiol Behav; 2016 Oct; 164(Pt B):517-523. PubMed ID: 27129676
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.