These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 35929265)

  • 1. Effect of high content nanohydroxyapatite composite scaffolds prepared via melt extrusion additive manufacturing on the osteogenic differentiation of human mesenchymal stromal cells.
    Cámara-Torres M; Sinha R; Sanchez A; Habibovic P; Patelli A; Mota C; Moroni L
    Biomater Adv; 2022 Jun; 137():212833. PubMed ID: 35929265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporation of strontium-containing bioactive particles into PEOT/PBT electrospun scaffolds for bone tissue regeneration.
    Tomasina C; Montalbano G; Fiorilli S; Quadros P; Azevedo A; Coelho C; Vitale-Brovarone C; Camarero-Espinosa S; Moroni L
    Biomater Adv; 2023 Jun; 149():213406. PubMed ID: 37054582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D-printed bioactive scaffolds from nanosilicates and PEOT/PBT for bone tissue engineering.
    Carrow JK; Di Luca A; Dolatshahi-Pirouz A; Moroni L; Gaharwar AK
    Regen Biomater; 2019 Feb; 6(1):29-37. PubMed ID: 30740240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Installation of click-type functional groups enable the creation of an additive manufactured construct for the osteochondral interface.
    Beeren IAO; Dijkstra PJ; Lourenço AFH; Sinha R; Gomes DB; Liu H; Bouvy N; Baker MB; Camarero-Espinosa S; Moroni L
    Biofabrication; 2022 Dec; 15(1):. PubMed ID: 36395500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining technologies to create bioactive hybrid scaffolds for bone tissue engineering.
    Nandakumar A; Barradas A; de Boer J; Moroni L; van Blitterswijk C; Habibovic P
    Biomatter; 2013; 3(2):. PubMed ID: 23507924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological and Tribological Assessment of Poly(Ethylene Oxide Terephthalate)/Poly(Butylene Terephthalate), Polycaprolactone, and Poly (L\DL) Lactic Acid Plotted Scaffolds for Skeletal Tissue Regeneration.
    Hendrikson WJ; Zeng X; Rouwkema J; van Blitterswijk CA; van der Heide E; Moroni L
    Adv Healthc Mater; 2016 Jan; 5(2):232-43. PubMed ID: 26775915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PEGylated poly(glycerol sebacate)-modified calcium phosphate scaffolds with desirable mechanical behavior and enhanced osteogenic capacity.
    Ma Y; Zhang W; Wang Z; Wang Z; Xie Q; Niu H; Guo H; Yuan Y; Liu C
    Acta Biomater; 2016 Oct; 44():110-24. PubMed ID: 27544808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patient-Derived Human Induced Pluripotent Stem Cells From Gingival Fibroblasts Composited With Defined Nanohydroxyapatite/Chitosan/Gelatin Porous Scaffolds as Potential Bone Graft Substitutes.
    Ji J; Tong X; Huang X; Zhang J; Qin H; Hu Q
    Stem Cells Transl Med; 2016 Jan; 5(1):95-105. PubMed ID: 26586776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rational design of gelatin/nanohydroxyapatite cryogel scaffolds for bone regeneration by introducing chemical and physical cues to enhance osteogenesis of bone marrow mesenchymal stem cells.
    Shalumon KT; Liao HT; Kuo CY; Wong CB; Li CJ; P A M; Chen JP
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109855. PubMed ID: 31500067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteogenic Differentiation of MSCs on Fibronectin-Coated and nHA-Modified Scaffolds.
    Mohamadyar-Toupkanlou F; Vasheghani-Farahani E; Hanaee-Ahvaz H; Soleimani M; Dodel M; Havasi P; Ardeshirylajimi A; Taherzadeh ES
    ASAIO J; 2017; 63(5):684-691. PubMed ID: 28234642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antiosteoporotic Nanohydroxyapatite Zoledronate Scaffold Seeded with Bone Marrow Mesenchymal Stromal Cells for Bone Regeneration: A 3D In Vitro Model.
    Tschon M; Boanini E; Sartori M; Salamanna F; Panzavolta S; Bigi A; Fini M
    Int J Mol Sci; 2022 May; 23(11):. PubMed ID: 35682677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The addition of zinc ions to polymer-ceramic composites accelerated osteogenic differentiation of human mesenchymal stromal cells.
    Nikody M; Li J; Balmayor ER; Moroni L; Habibovic P
    Biomater Adv; 2023 Jun; 149():213391. PubMed ID: 36990024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Nano-hydroxyapatite/Poly(DL-lactic-co-glycolic acid) Microsphere-Based Composite Scaffolds on Repair of Bone Defects: Evaluating the Role of Nano-hydroxyapatite Content.
    He S; Lin KF; Sun Z; Song Y; Zhao YN; Wang Z; Bi L; Liu J
    Artif Organs; 2016 Jul; 40(7):E128-35. PubMed ID: 27378617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface energy and stiffness discrete gradients in additive manufactured scaffolds for osteochondral regeneration.
    Di Luca A; Longoni A; Criscenti G; Lorenzo-Moldero I; Klein-Gunnewiek M; Vancso J; van Blitterswijk C; Mota C; Moroni L
    Biofabrication; 2016 Feb; 8(1):015014. PubMed ID: 26924824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro and in vivo bone formation potential of surface calcium phosphate-coated polycaprolactone and polycaprolactone/bioactive glass composite scaffolds.
    Poh PSP; Hutmacher DW; Holzapfel BM; Solanki AK; Stevens MM; Woodruff MA
    Acta Biomater; 2016 Jan; 30():319-333. PubMed ID: 26563472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Content-Dependent Osteogenic Response of Nanohydroxyapatite: An in Vitro and in Vivo Assessment within Collagen-Based Scaffolds.
    Cunniffe GM; Curtin CM; Thompson EM; Dickson GR; O'Brien FJ
    ACS Appl Mater Interfaces; 2016 Sep; 8(36):23477-88. PubMed ID: 27537605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Nano-HA/Collagen Composite Hydrogels on Osteogenic Behavior of Mesenchymal Stromal Cells.
    Hayrapetyan A; Bongio M; Leeuwenburgh SC; Jansen JA; van den Beucken JJ
    Stem Cell Rev Rep; 2016 Jun; 12(3):352-64. PubMed ID: 26803618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic effect of scaffold composition and dynamic culturing environment in multilayered systems for bone tissue engineering.
    Rodrigues MT; Martins A; Dias IR; Viegas CA; Neves NM; Gomes ME; Reis RL
    J Tissue Eng Regen Med; 2012 Nov; 6(10):e24-30. PubMed ID: 22451140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of calcium phosphate surface structure in osteogenesis and the mechanisms involved.
    Xiao D; Zhang J; Zhang C; Barbieri D; Yuan H; Moroni L; Feng G
    Acta Biomater; 2020 Apr; 106():22-33. PubMed ID: 31926336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laminated electrospun nHA/PHB-composite scaffolds mimicking bone extracellular matrix for bone tissue engineering.
    Chen Z; Song Y; Zhang J; Liu W; Cui J; Li H; Chen F
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():341-351. PubMed ID: 28024596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.