These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 35929371)

  • 1. Microstructural changes of concentrated Newtonian suspensions in the first oscillation cycles probed with linear and non-linear rheology.
    Minale M; Martone R; Carotenuto C
    Soft Matter; 2022 Aug; 18(32):6051-6065. PubMed ID: 35929371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oscillatory rheology of dense, athermal suspensions of nearly hard spheres below the jamming point.
    Ness C; Xing Z; Eiser E
    Soft Matter; 2017 May; 13(19):3664-3674. PubMed ID: 28451674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the textures of composite skin care formulations using large amplitude oscillatory shear.
    Gillece T; McMullen RL; Fares H; Senak L; Ozkan S; Foltis L
    J Cosmet Sci; 2016; 67(3):121-59. PubMed ID: 29394015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The first normal stress difference of non-Brownian hard-sphere suspensions in the oscillatory shear flow near the liquid and crystal coexistence region.
    Lee YK; Hyun K; Ahn KH
    Soft Matter; 2020 Nov; 16(43):9864-9875. PubMed ID: 33073283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transition from steady shear to oscillatory shear rheology of dense suspensions.
    Dong J; Trulsson M
    Phys Rev E; 2020 Nov; 102(5-1):052605. PubMed ID: 33327063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rheology and microstructure of non-Brownian suspensions in the liquid and crystal coexistence region: strain stiffening in large amplitude oscillatory shear.
    Lee YK; Nam J; Hyun K; Ahn KH; Lee SJ
    Soft Matter; 2015 May; 11(20):4061-74. PubMed ID: 25909879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shear viscosity and nonlinear behavior of whole blood under large amplitude oscillatory shear.
    Sousa PC; Carneiro J; Vaz R; Cerejo A; Pinho FT; Alves MA; Oliveira MS
    Biorheology; 2013; 50(5-6):269-82. PubMed ID: 24398609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shear-Thickening Response of Fumed Silica Suspensions under Steady and Oscillatory Shear.
    Raghavan SR; Khan SA
    J Colloid Interface Sci; 1997 Jan; 185(1):57-67. PubMed ID: 9056301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Behavior of a supercooled chalcogenide liquid in the non-Newtonian regime under steady vs. oscillatory shear.
    Sen S; Zhu W; Aitken BG
    J Chem Phys; 2017 Jul; 147(3):034503. PubMed ID: 28734303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oscillatory shear response of dilute ferrofluids: predictions from rotational Brownian dynamics simulations and ferrohydrodynamics modeling.
    Soto-Aquino D; Rosso D; Rinaldi C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056306. PubMed ID: 22181497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oscillatory and steady shear rheology of gellan/dextran blends.
    Ahmad NH; Ahmed J; Hashim DM; Manap YA; Mustafa S
    J Food Sci Technol; 2015 May; 52(5):2902-9. PubMed ID: 25892789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-Newtonian rheology in suspension cell cultures significantly impacts bioreactor shear stress quantification.
    Wyma A; Martin-Alarcon L; Walsh T; Schmidt TA; Gates ID; Kallos MS
    Biotechnol Bioeng; 2018 Aug; 115(8):2101-2113. PubMed ID: 29704461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The density and strength of proteoglycan-proteoglycan interaction sites in concentrated solutions.
    Zhu W; Lai WM; Mow VC
    J Biomech; 1991; 24(11):1007-18. PubMed ID: 1761579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear response of dense colloidal suspensions under oscillatory shear: mode-coupling theory and Fourier transform rheology experiments.
    Brader JM; Siebenbürger M; Ballauff M; Reinheimer K; Wilhelm M; Frey SJ; Weysser F; Fuchs M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 1):061401. PubMed ID: 21230671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct numerical simulations for non-Newtonian rheology of concentrated particle dispersions.
    Iwashita T; Yamamoto R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061402. PubMed ID: 20365170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colloidal gels tuned by oscillatory shear.
    Moghimi E; Jacob AR; Koumakis N; Petekidis G
    Soft Matter; 2017 Mar; 13(12):2371-2383. PubMed ID: 28277578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large amplitude oscillatory shear (LAOS) for nonlinear rheological behavior of heterogeneous emulsion gels made from natural supramolecular gelators.
    Li Q; Xu M; Xie J; Su E; Wan Z; Sagis LMC; Yang X
    Food Res Int; 2021 Feb; 140():110076. PubMed ID: 33648296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rheology of cubic particles suspended in a Newtonian fluid.
    Cwalina CD; Harrison KJ; Wagner NJ
    Soft Matter; 2016 May; 12(20):4654-65. PubMed ID: 27112791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rheology of pharmaceutical systems: oscillatory and steady shear of non-Newtonian viscoelastic liquids.
    Thurston GB; Martin A
    J Pharm Sci; 1978 Nov; 67(11):1499-506. PubMed ID: 712582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic modes of red blood cells in oscillatory shear flow.
    Noguchi H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 1):061920. PubMed ID: 20866453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.