BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 35929492)

  • 1. The role of neuropeptides in regulating ecdysis and reproduction in the hemimetabolous insect Rhodnius prolixus.
    Sterkel M; Volonté M; Albornoz MG; Wulff JP; Sánchez MDH; Terán PM; Ajmat MT; Ons S
    J Exp Biol; 2022 Sep; 225(17):. PubMed ID: 35929492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Orcokinins regulate the expression of neuropeptide precursor genes related to ecdysis in the hemimetabolous insect Rhodnius prolixus.
    Wulff JP; Capriotti N; Ons S
    J Insect Physiol; 2018 Jul; 108():31-39. PubMed ID: 29778903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Orcokinin neuropeptides regulate ecdysis in the hemimetabolous insect Rhodnius prolixus.
    Wulff JP; Sierra I; Sterkel M; Holtof M; Van Wielendaele P; Francini F; Broeck JV; Ons S
    Insect Biochem Mol Biol; 2017 Feb; 81():91-102. PubMed ID: 28089691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ecdysis triggering hormone system is essential for successful moulting of a major hemimetabolous pest insect, Schistocerca gregaria.
    Lenaerts C; Cools D; Verdonck R; Verbakel L; Vanden Broeck J; Marchal E
    Sci Rep; 2017 Apr; 7():46502. PubMed ID: 28417966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for a conserved CCAP-signaling pathway controlling ecdysis in a hemimetabolous insect, Rhodnius prolixus.
    Lee D; Orchard I; Lange AB
    Front Neurosci; 2013; 7():207. PubMed ID: 24204330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Intricate Role of Ecdysis Triggering Hormone Signaling in Insect Development and Reproductive Regulation.
    Malhotra P; Basu S
    Insects; 2023 Aug; 14(8):. PubMed ID: 37623421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complex steroid-peptide-receptor cascade controls insect ecdysis.
    Zitnan D; Kim YJ; Zitnanová I; Roller L; Adams ME
    Gen Comp Endocrinol; 2007; 153(1-3):88-96. PubMed ID: 17507015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ecdysis-related pleiotropic neuropeptides expression during Anopheles albimanus development.
    Alvarado-Delgado A; Moran-Francia K; Perales-Ortiz G; Rodríguez MH; Lanz-Mendoza H
    Salud Publica Mex; 2018; 60(1):48-55. PubMed ID: 29689656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eclosion hormone provides a link between ecdysis-triggering hormone and crustacean cardioactive peptide in the neuroendocrine cascade that controls ecdysis behavior.
    Gammie SC; Truman JW
    J Exp Biol; 1999 Feb; 202(Pt 4):343-52. PubMed ID: 9914143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ancestral Role of Ecdysis-Related Neuropeptides in Animal Life Cycle Transitions.
    Zieger E; Robert NSM; Calcino A; Wanninger A
    Curr Biol; 2021 Jan; 31(1):207-213.e4. PubMed ID: 33125864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and expression of the CCAP receptor in the Chagas' disease vector, Rhodnius prolixus, and its involvement in cardiac control.
    Lee D; Vanden Broeck J; Lange AB
    PLoS One; 2013; 8(7):e68897. PubMed ID: 23874803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DOPA decarboxylase is essential for cuticle tanning in Rhodnius prolixus (Hemiptera: Reduviidae), affecting ecdysis, survival and reproduction.
    Sterkel M; Ons S; Oliveira PL
    Insect Biochem Mol Biol; 2019 May; 108():24-31. PubMed ID: 30885802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prothoracicostatic Activity of the Ecdysis-Regulating Neuropeptide Crustacean Cardioactive Peptide (CCAP) in the Desert Locust.
    Verbakel L; Lenaerts C; Abou El Asrar R; Zandecki C; Bruyninckx E; Monjon E; Marchal E; Vanden Broeck J
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crustacean cardioactive peptide and its receptor modulate the ecdysis behavior in the pea aphid, Acyrthosiphon pisum.
    Shi Y; Liu TY; Ding BY; Niu J; Jiang HB; Liu TX; Wang JJ
    J Insect Physiol; 2022; 137():104364. PubMed ID: 35121009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic analysis of Eclosion hormone action during Drosophila larval ecdysis.
    Krüger E; Mena W; Lahr EC; Johnson EC; Ewer J
    Development; 2015 Dec; 142(24):4279-87. PubMed ID: 26395475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional analysis of four neuropeptides, EH, ETH, CCAP and bursicon, and their receptors in adult ecdysis behavior of the red flour beetle, Tribolium castaneum.
    Arakane Y; Li B; Muthukrishnan S; Beeman RW; Kramer KJ; Park Y
    Mech Dev; 2008; 125(11-12):984-95. PubMed ID: 18835439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuroendocrine control of larval ecdysis behavior in Drosophila: complex regulation by partially redundant neuropeptides.
    Clark AC; del Campo ML; Ewer J
    J Neurosci; 2004 Apr; 24(17):4283-92. PubMed ID: 15115824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptomic analysis of crustacean neuropeptide signaling during the moult cycle in the green shore crab, Carcinus maenas.
    Oliphant A; Alexander JL; Swain MT; Webster SG; Wilcockson DC
    BMC Genomics; 2018 Sep; 19(1):711. PubMed ID: 30257651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Different actions of ecdysis-triggering hormone on the brain and ventral nerve cord of the hornworm, Manduca sexta.
    Asuncion-Uchi M; El Shawa H; Martin T; Fuse M
    Gen Comp Endocrinol; 2010 Mar; 166(1):54-65. PubMed ID: 19699740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic and functional characterization of a methoprene-tolerant gene in the kissing-bug Rhodnius prolixus.
    Villalobos-Sambucaro MJ; Riccillo FL; Calderón-Fernández GM; Sterkel M; Diambra LA; Ronderos JR
    Gen Comp Endocrinol; 2015 May; 216():1-8. PubMed ID: 25963043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.