These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 35930560)

  • 1. Exhaustive Mapping of the Conformational Space of Natural Dipeptides by the DFT-D3//COSMO-RS Method.
    Kalvoda T; Culka M; Rulíšek L; Andris E
    J Phys Chem B; 2022 Aug; 126(32):5949-5958. PubMed ID: 35930560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping Conformational Space of All 8000 Tripeptides by Quantum Chemical Methods: What Strain Is Affordable within Folded Protein Chains?
    Culka M; Kalvoda T; Gutten O; Rulíšek L
    J Phys Chem B; 2021 Jan; 125(1):58-69. PubMed ID: 33393778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macrocycle Conformational Sampling by DFT-D3/COSMO-RS Methodology.
    Gutten O; Bím D; Řezáč J; Rulíšek L
    J Chem Inf Model; 2018 Jan; 58(1):48-60. PubMed ID: 29182321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic Evaluation of ReaxFF Reactive Force Fields for Biochemical Applications.
    Moerman E; Furman D; Wales DJ
    J Chem Theory Comput; 2021 Jan; 17(1):497-514. PubMed ID: 33337878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclic retro-inverso dipeptides with two aromatic side chains. II. Conformational analysis.
    Yamazaki T; Nunami K; Goodman M
    Biopolymers; 1991 Nov; 31(13):1513-28. PubMed ID: 1814501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational equilibria of terminally blocked single amino acids at the water-hexane interface. A molecular dynamics study.
    Chipot C; Pohorille A
    J Phys Chem B; 1998 Jan; 102(1):281-90. PubMed ID: 11541119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward Ab Initio Protein Folding: Inherent Secondary Structure Propensity of Short Peptides from the Bioinformatics and Quantum-Chemical Perspective.
    Culka M; Galgonek J; Vymětal J; Vondrášek J; Rulíšek L
    J Phys Chem B; 2019 Feb; 123(6):1215-1227. PubMed ID: 30645123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental conformational energy maps of proteins and peptides.
    Balaji GA; Nagendra HG; Balaji VN; Rao SN
    Proteins; 2017 Jun; 85(6):979-1001. PubMed ID: 28168743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing the accuracy and performance of implicit solvent models for drug molecules: conformational ensemble approaches.
    Kolář M; Fanfrlík J; Lepšík M; Forti F; Luque FJ; Hobza P
    J Phys Chem B; 2013 May; 117(19):5950-62. PubMed ID: 23600402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benchmarking Different QM Levels for Usage with COSMO-RS.
    Reinisch J; Diedenhofen M; Wilcken R; Udvarhelyi A; Glöß A
    J Chem Inf Model; 2019 Nov; 59(11):4806-4813. PubMed ID: 31692342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate Receptor-Ligand Binding Free Energies from Fast QM Conformational Chemical Space Sampling.
    Boz E; Stein M
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33802920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intrinsic energy landscapes of amino acid side-chains.
    Zhu X; Lopes PE; Shim J; MacKerell AD
    J Chem Inf Model; 2012 Jun; 52(6):1559-72. PubMed ID: 22582825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An improved AMBER force field for α,α-dialkylated peptides: intrinsic and solvent-induced conformational preferences of model systems.
    Grubišić S; Brancato G; Barone V
    Phys Chem Chem Phys; 2013 Oct; 15(40):17395-407. PubMed ID: 24022462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward Building Protein Force Fields by Residue-Based Systematic Molecular Fragmentation and Neural Network.
    Wang H; Yang W
    J Chem Theory Comput; 2019 Feb; 15(2):1409-1417. PubMed ID: 30550274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational energies of microsolvated Na
    Otlyotov AA; Minenkov Y
    J Comput Chem; 2022 Oct; 43(27):1856-1863. PubMed ID: 36053781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using quantum mechanics to improve estimates of amino acid side chain rotamer energies.
    Renfrew PD; Butterfoss GL; Kuhlman B
    Proteins; 2008 Jun; 71(4):1637-46. PubMed ID: 18076032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations.
    Mackerell AD; Feig M; Brooks CL
    J Comput Chem; 2004 Aug; 25(11):1400-15. PubMed ID: 15185334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward Accurate Conformational Energies of Smaller Peptides and Medium-Sized Macrocycles: MPCONF196 Benchmark Energy Data Set.
    Řezáč J; Bím D; Gutten O; Rulíšek L
    J Chem Theory Comput; 2018 Mar; 14(3):1254-1266. PubMed ID: 29461829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding free energies in the SAMPL6 octa-acid host-guest challenge calculated with MM and QM methods.
    Caldararu O; Olsson MA; Misini Ignjatović M; Wang M; Ryde U
    J Comput Aided Mol Des; 2018 Oct; 32(10):1027-1046. PubMed ID: 30203229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solvation effects on alanine dipeptide: A MP2/cc-pVTZ//MP2/6-31G** study of (Phi, Psi) energy maps and conformers in the gas phase, ether, and water.
    Wang ZX; Duan Y
    J Comput Chem; 2004 Nov; 25(14):1699-716. PubMed ID: 15362127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.