These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 35930818)

  • 1. Enhanced wound-healing capability with inherent antimicrobial activities of usnic acid incorporated poly(ε-caprolactone)/decellularized extracellular matrix nanofibrous scaffold.
    Chandika P; Khan F; Heo SY; Kim YM; Yi M; Jung WK
    Biomater Adv; 2022 Sep; 140():213046. PubMed ID: 35930818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrospun PCL/mupirocin and chitosan/lidocaine hydrochloride multifunctional double layer nanofibrous scaffolds for wound dressing applications.
    Li X; Wang C; Yang S; Liu P; Zhang B
    Int J Nanomedicine; 2018; 13():5287-5299. PubMed ID: 30237715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrospun porous bilayer nano-fibrous fish collagen/PCL bio-composite scaffolds with covalently cross-linked chitooligosaccharides for full-thickness wound-healing applications.
    Chandika P; Oh GW; Heo SY; Kim SC; Kim TH; Kim MS; Jung WK
    Mater Sci Eng C Mater Biol Appl; 2021 Feb; 121():111871. PubMed ID: 33579504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanodiamond/poly-ε-caprolactone nanofibrous scaffold for wound management.
    Houshyar S; Kumar GS; Rifai A; Tran N; Nayak R; Shanks RA; Padhye R; Fox K; Bhattacharyya A
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():378-387. PubMed ID: 30948073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Palmatine-loaded electrospun poly(ε-caprolactone)/gelatin nanofibrous scaffolds accelerate wound healing and inhibit hypertrophic scar formation in a rabbit ear model.
    Jiang Z; Zhao L; He F; Tan H; Li Y; Tang Y; Duan X; Li Y
    J Biomater Appl; 2021 Feb; 35(7):869-886. PubMed ID: 32799702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly (glycerol sebacate)-poly (ε-caprolactone) blend nanofibrous scaffold as intrinsic bio- and immunocompatible system for corneal repair.
    Salehi S; Czugala M; Stafiej P; Fathi M; Bahners T; Gutmann JS; Singer BB; Fuchsluger TA
    Acta Biomater; 2017 Mar; 50():370-380. PubMed ID: 28069498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of nanofibrous scaffolds containing gum tragacanth/poly (ε-caprolactone) for application as skin scaffolds.
    Ranjbar-Mohammadi M; Bahrami SH
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():71-9. PubMed ID: 25579898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antibacterial performance and in vivo diabetic wound healing of curcumin loaded gum tragacanth/poly(ε-caprolactone) electrospun nanofibers.
    Ranjbar-Mohammadi M; Rabbani S; Bahrami SH; Joghataei MT; Moayer F
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():1183-91. PubMed ID: 27612816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Usnic-Acid-Functionalized Silk Fibroin Composite Scaffolds for Cutaneous Wounds Healing.
    Zha X; Xiong X; Chen C; Li Y; Zhang L; Xie H; Jiang Q
    Macromol Biosci; 2021 Mar; 21(3):e2000361. PubMed ID: 33369081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis, characterization, and antimicrobial properties of novel double layer nanocomposite electrospun fibers for wound dressing applications.
    Hassiba AJ; El Zowalaty ME; Webster TJ; Abdullah AM; Nasrallah GK; Khalil KA; Luyt AS; Elzatahry AA
    Int J Nanomedicine; 2017; 12():2205-2213. PubMed ID: 28356737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrospun chitosan-graft-poly (ε -caprolactone)/poly (ε-caprolactone) cationic nanofibrous mats as potential scaffolds for skin tissue engineering.
    Chen H; Huang J; Yu J; Liu S; Gu P
    Int J Biol Macromol; 2011 Jan; 48(1):13-9. PubMed ID: 20933540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of MDR-specific phage Pɸ-Mi-Pa loaded mucoadhesive electrospun nanofibrous scaffolds against drug-resistant Pseudomonas aeruginosa- induced wound infections in an animal model.
    Ilomuanya MO; Oseni BA; Okwuba BC; Abia P; Aboh MI; Oluwale OP; Alkiviadis T; Tsouknidas AE; Amenaghawon AN; Nwaneri SC
    Int J Biol Macromol; 2024 Oct; 277(Pt 3):134484. PubMed ID: 39102904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of 3D polycaprolactone/ε-polylysine-modified chitosan fibrous scaffolds with incorporation of bioactive factors for accelerating wound healing.
    Li P; Ruan L; Jiang G; Sun Y; Wang R; Gao X; Yunusov KE; Aharodnikau UE; Solomevich SO
    Acta Biomater; 2022 Oct; 152():197-209. PubMed ID: 36084922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and Fabrication of Collagen-Coated Ostholamide Electrospun Nanofiber Scaffold for Wound Healing.
    Kandhasamy S; Perumal S; Madhan B; Umamaheswari N; Banday JA; Perumal PT; Santhanakrishnan VP
    ACS Appl Mater Interfaces; 2017 Mar; 9(10):8556-8568. PubMed ID: 28221758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocompatible Aloe vera and Tetracycline Hydrochloride Loaded Hybrid Nanofibrous Scaffolds for Skin Tissue Engineering.
    Ezhilarasu H; Ramalingam R; Dhand C; Lakshminarayanan R; Sadiq A; Gandhimathi C; Ramakrishna S; Bay BH; Venugopal JR; Srinivasan DK
    Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31635374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A conducive bioceramic/polymer composite biomaterial for diabetic wound healing.
    Lv F; Wang J; Xu P; Han Y; Ma H; Xu H; Chen S; Chang J; Ke Q; Liu M; Yi Z; Wu C
    Acta Biomater; 2017 Sep; 60():128-143. PubMed ID: 28713016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and characterization of PVA/Gum tragacanth/PCL hybrid nanofibrous scaffolds for skin substitutes.
    Zarekhalili Z; Bahrami SH; Ranjbar-Mohammadi M; Milan PB
    Int J Biol Macromol; 2017 Jan; 94(Pt A):679-690. PubMed ID: 27777080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel electrospun chitosan/polyvinyl alcohol/zinc oxide nanofibrous mats with antibacterial and antioxidant properties for diabetic wound healing.
    Ahmed R; Tariq M; Ali I; Asghar R; Noorunnisa Khanam P; Augustine R; Hasan A
    Int J Biol Macromol; 2018 Dec; 120(Pt A):385-393. PubMed ID: 30110603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization and integration of nanosilver on polycaprolactone nanofibrous mesh for bacterial inhibition and wound healing in vitro and in vivo.
    Liu M; Luo G; Wang Y; He W; Liu T; Zhou D; Hu X; Xing M; Wu J
    Int J Nanomedicine; 2017; 12():6827-6840. PubMed ID: 28979121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioinspired 3D-printed scaffold embedding DDAB-nano ZnO/nanofibrous microspheres for regenerative diabetic wound healing.
    Metwally WM; El-Habashy SE; El-Hosseiny LS; Essawy MM; Eltaher HM; El-Khordagui LK
    Biofabrication; 2023 Oct; 16(1):. PubMed ID: 37751750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.