These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 35931004)
1. Transcription factors Vrf1 and Hox7 coordinately regulate appressorium maturation in the rice blast fungus Magnaporthe oryzae. Huang P; Wang J; Li Y; Wang Q; Huang Z; Qian H; Liu XH; Lin FC; Lu J Microbiol Res; 2022 Oct; 263():127141. PubMed ID: 35931004 [TBL] [Abstract][Full Text] [Related]
2. Magnaporthe oryzae Auxiliary Activity Protein MoAa91 Functions as Chitin-Binding Protein To Induce Appressorium Formation on Artificial Inductive Surfaces and Suppress Plant Immunity. Li Y; Liu X; Liu M; Wang Y; Zou Y; You Y; Yang L; Hu J; Zhang H; Zheng X; Wang P; Zhang Z mBio; 2020 Mar; 11(2):. PubMed ID: 32209696 [TBL] [Abstract][Full Text] [Related]
3. Characterization of 47 Cys2 -His2 zinc finger proteins required for the development and pathogenicity of the rice blast fungus Magnaporthe oryzae. Cao H; Huang P; Zhang L; Shi Y; Sun D; Yan Y; Liu X; Dong B; Chen G; Snyder JH; Lin F; Lu J New Phytol; 2016 Aug; 211(3):1035-51. PubMed ID: 27041000 [TBL] [Abstract][Full Text] [Related]
4. Homeobox transcription factors are required for conidiation and appressorium development in the rice blast fungus Magnaporthe oryzae. Kim S; Park SY; Kim KS; Rho HS; Chi MH; Choi J; Park J; Kong S; Park J; Goh J; Lee YH PLoS Genet; 2009 Dec; 5(12):e1000757. PubMed ID: 19997500 [TBL] [Abstract][Full Text] [Related]
5. Differences between appressoria formed by germ tubes and appressorium-like structures developed by hyphal tips in Magnaporthe oryzae. Kong LA; Li GT; Liu Y; Liu MG; Zhang SJ; Yang J; Zhou XY; Peng YL; Xu JR Fungal Genet Biol; 2013 Jul; 56():33-41. PubMed ID: 23591122 [TBL] [Abstract][Full Text] [Related]
6. MoCDC14 is important for septation during conidiation and appressorium formation in Magnaporthe oryzae. Li C; Cao S; Zhang C; Zhang Y; Zhang Q; Xu JR; Wang C Mol Plant Pathol; 2018 Feb; 19(2):328-340. PubMed ID: 27935243 [TBL] [Abstract][Full Text] [Related]
7. Different chitin synthase genes are required for various developmental and plant infection processes in the rice blast fungus Magnaporthe oryzae. Kong LA; Yang J; Li GT; Qi LL; Zhang YJ; Wang CF; Zhao WS; Xu JR; Peng YL PLoS Pathog; 2012 Feb; 8(2):e1002526. PubMed ID: 22346755 [TBL] [Abstract][Full Text] [Related]
8. PKA activity is essential for relieving the suppression of hyphal growth and appressorium formation by MoSfl1 in Magnaporthe oryzae. Li Y; Zhang X; Hu S; Liu H; Xu JR PLoS Genet; 2017 Aug; 13(8):e1006954. PubMed ID: 28806765 [TBL] [Abstract][Full Text] [Related]
9. MicroRNA-like milR236, regulated by transcription factor MoMsn2, targets histone acetyltransferase MoHat1 to play a role in appressorium formation and virulence of the rice blast fungus Magnaporthe oryzae. Li Y; Liu X; Yin Z; You Y; Zou Y; Liu M; He Y; Zhang H; Zheng X; Zhang Z; Wang P Fungal Genet Biol; 2020 Apr; 137():103349. PubMed ID: 32006681 [TBL] [Abstract][Full Text] [Related]
10. Appressorium-mediated plant infection by Magnaporthe oryzae is regulated by a Pmk1-dependent hierarchical transcriptional network. Osés-Ruiz M; Cruz-Mireles N; Martin-Urdiroz M; Soanes DM; Eseola AB; Tang B; Derbyshire P; Nielsen M; Cheema J; Were V; Eisermann I; Kershaw MJ; Yan X; Valdovinos-Ponce G; Molinari C; Littlejohn GR; Valent B; Menke FLH; Talbot NJ Nat Microbiol; 2021 Nov; 6(11):1383-1397. PubMed ID: 34707224 [TBL] [Abstract][Full Text] [Related]
11. Chitin-deacetylase activity induces appressorium differentiation in the rice blast fungus Magnaporthe oryzae. Kuroki M; Okauchi K; Yoshida S; Ohno Y; Murata S; Nakajima Y; Nozaka A; Tanaka N; Nakajima M; Taguchi H; Saitoh KI; Teraoka T; Narukawa M; Kamakura T Sci Rep; 2017 Aug; 7(1):9697. PubMed ID: 28852173 [TBL] [Abstract][Full Text] [Related]
12. The bZIP transcription factor BIP1 of the rice blast fungus is essential for infection and regulates a specific set of appressorium genes. Lambou K; Tag A; Lassagne A; Collemare J; Clergeot PH; Barbisan C; Perret P; Tharreau D; Millazo J; Chartier E; De Vries RP; Hirsch J; Morel JB; Beffa R; Kroj T; Thomas T; Lebrun MH PLoS Pathog; 2024 Jan; 20(1):e1011945. PubMed ID: 38252628 [TBL] [Abstract][Full Text] [Related]
13. Structure-function analyses of the Pth11 receptor reveal an important role for CFEM motif and redox regulation in rice blast. Kou Y; Tan YH; Ramanujam R; Naqvi NI New Phytol; 2017 Apr; 214(1):330-342. PubMed ID: 27898176 [TBL] [Abstract][Full Text] [Related]
14. A kelch domain cell end protein, PoTea1, mediates cell polarization during appressorium morphogenesis in Pyricularia oryzae. Qu Y; Cao H; Huang P; Wang J; Liu X; Lu J; Lin FC Microbiol Res; 2022 Jun; 259():126999. PubMed ID: 35305442 [TBL] [Abstract][Full Text] [Related]
15. A Histone Deacetylase, Magnaporthe oryzae RPD3, Regulates Reproduction and Pathogenic Development in the Rice Blast Fungus. Lee SH; Farh ME; Lee J; Oh YT; Cho E; Park J; Son H; Jeon J mBio; 2021 Dec; 12(6):e0260021. PubMed ID: 34781734 [TBL] [Abstract][Full Text] [Related]
16. MoGrr1, a novel F-box protein, is involved in conidiogenesis and cell wall integrity and is critical for the full virulence of Magnaporthe oryzae. Guo M; Gao F; Zhu X; Nie X; Pan Y; Gao Z Appl Microbiol Biotechnol; 2015 Oct; 99(19):8075-88. PubMed ID: 26227409 [TBL] [Abstract][Full Text] [Related]
17. The putative Gγ subunit gene MGG1 is required for conidiation, appressorium formation, mating and pathogenicity in Magnaporthe oryzae. Li Y; Que Y; Liu Y; Yue X; Meng X; Zhang Z; Wang Z Curr Genet; 2015 Nov; 61(4):641-51. PubMed ID: 25944571 [TBL] [Abstract][Full Text] [Related]
18. Two independent S-phase checkpoints regulate appressorium-mediated plant infection by the rice blast fungus Magnaporthe oryzae. Osés-Ruiz M; Sakulkoo W; Littlejohn GR; Martin-Urdiroz M; Talbot NJ Proc Natl Acad Sci U S A; 2017 Jan; 114(2):E237-E244. PubMed ID: 28028232 [TBL] [Abstract][Full Text] [Related]
19. Metabolomics Analysis Identifies Sphingolipids as Key Signaling Moieties in Appressorium Morphogenesis and Function in Magnaporthe oryzae. Liu XH; Liang S; Wei YY; Zhu XM; Li L; Liu PP; Zheng QX; Zhou HN; Zhang Y; Mao LJ; Fernandes CM; Del Poeta M; Naqvi NI; Lin FC mBio; 2019 Aug; 10(4):. PubMed ID: 31431550 [TBL] [Abstract][Full Text] [Related]
20. Bypassing both surface attachment and surface recognition requirements for appressorium formation by overactive ras signaling in Magnaporthe oryzae. Zhou X; Zhao X; Xue C; Dai Y; Xu JR Mol Plant Microbe Interact; 2014 Sep; 27(9):996-1004. PubMed ID: 24835254 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]