BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 35931114)

  • 1. Chlamydia trachomatis development requires both host glycolysis and oxidative phosphorylation but has only minor effects on these pathways.
    N'Gadjaga MD; Perrinet S; Connor MG; Bertolin G; Millot GA; Subtil A
    J Biol Chem; 2022 Sep; 298(9):102338. PubMed ID: 35931114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Host and Bacterial Glycolysis during
    Ende RJ; Derré I
    Infect Immun; 2020 Nov; 88(12):. PubMed ID: 32900818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chlamydia trachomatis targets mitochondrial dynamics to promote intracellular survival and proliferation.
    Kurihara Y; Itoh R; Shimizu A; Walenna NF; Chou B; Ishii K; Soejima T; Fujikane A; Hiromatsu K
    Cell Microbiol; 2019 Jan; 21(1):e12962. PubMed ID: 30311994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic energy dependency of
    Liang P; Rosas-Lemus M; Patel D; Fang X; Tuz K; Juárez O
    J Biol Chem; 2018 Jan; 293(2):510-522. PubMed ID: 29123027
    [No Abstract]   [Full Text] [Related]  

  • 5. Expansion of the Chlamydia trachomatis inclusion does not require bacterial replication.
    Engström P; Bergström M; Alfaro AC; Syam Krishnan K; Bahnan W; Almqvist F; Bergström S
    Int J Med Microbiol; 2015 May; 305(3):378-82. PubMed ID: 25771502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chlamydia trachomatis recruits protein kinase C during infection.
    Sah P; Nelson NH; Shaw JH; Lutter EI
    Pathog Dis; 2019 Aug; 77(6):. PubMed ID: 31647538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Loss of Expression of a Single Type 3 Effector (CT622) Strongly Reduces
    Cossé MM; Barta ML; Fisher DJ; Oesterlin LK; Niragire B; Perrinet S; Millot GA; Hefty PS; Subtil A
    Front Cell Infect Microbiol; 2018; 8():145. PubMed ID: 29868501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A meta-analysis of affinity purification-mass spectrometry experimental systems used to identify eukaryotic and chlamydial proteins at the Chlamydia trachomatis inclusion membrane.
    Olson MG; Ouellette SP; Rucks EA
    J Proteomics; 2020 Feb; 212():103595. PubMed ID: 31760040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interferon-γ interferes with host cell metabolism during intracellular Chlamydia trachomatis infection.
    Shima K; Kaeding N; Ogunsulire IM; Kaufhold I; Klinger M; Rupp J
    Cytokine; 2018 Dec; 112():95-101. PubMed ID: 29885991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chlamydia trachomatis genes whose products are related to energy metabolism are expressed differentially in active vs. persistent infection.
    Gérard HC; Freise J; Wang Z; Roberts G; Rudy D; Krauss-Opatz B; Köhler L; Zeidler H; Schumacher HR; Whittum-Hudson JA; Hudson AP
    Microbes Infect; 2002 Jan; 4(1):13-22. PubMed ID: 11825770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chlamydia trachomatis and its interaction with the cellular retromer.
    Banhart S; Rose L; Aeberhard L; Koch-Edelmann S; Heuer D
    Int J Med Microbiol; 2018 Jan; 308(1):197-205. PubMed ID: 29122514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reprogramming of host glutamine metabolism during Chlamydia trachomatis infection and its key role in peptidoglycan synthesis.
    Rajeeve K; Vollmuth N; Janaki-Raman S; Wulff TF; Baluapuri A; Dejure FR; Huber C; Fink J; Schmalhofer M; Schmitz W; Sivadasan R; Eilers M; Wolf E; Eisenreich W; Schulze A; Seibel J; Rudel T
    Nat Microbiol; 2020 Nov; 5(11):1390-1402. PubMed ID: 32747796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined Human Genome-wide RNAi and Metabolite Analyses Identify IMPDH as a Host-Directed Target against Chlamydia Infection.
    Rother M; Gonzalez E; Teixeira da Costa AR; Wask L; Gravenstein I; Pardo M; Pietzke M; Gurumurthy RK; Angermann J; Laudeley R; Glage S; Meyer M; Chumduri C; Kempa S; Dinkel K; Unger A; Klebl B; Klos A; Meyer TF
    Cell Host Microbe; 2018 May; 23(5):661-671.e8. PubMed ID: 29706504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of Wnt Signaling Pathways Impairs
    Kintner J; Moore CG; Whittimore JD; Butler M; Hall JV
    Front Cell Infect Microbiol; 2017; 7():501. PubMed ID: 29322031
    [No Abstract]   [Full Text] [Related]  

  • 15. The trans-Golgi SNARE syntaxin 10 is required for optimal development of Chlamydia trachomatis.
    Lucas AL; Ouellette SP; Kabeiseman EJ; Cichos KH; Rucks EA
    Front Cell Infect Microbiol; 2015; 5():68. PubMed ID: 26442221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In contrast to Chlamydia trachomatis, Waddlia chondrophila grows in human cells without inhibiting apoptosis, fragmenting the Golgi apparatus, or diverting post-Golgi sphingomyelin transport.
    Dille S; Kleinschnitz EM; Kontchou CW; Nölke T; Häcker G
    Infect Immun; 2015 Aug; 83(8):3268-80. PubMed ID: 26056386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chlamydia trachomatis Relies on Autonomous Phospholipid Synthesis for Membrane Biogenesis.
    Yao J; Cherian PT; Frank MW; Rock CO
    J Biol Chem; 2015 Jul; 290(31):18874-88. PubMed ID: 25995447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Host nectin-1 is required for efficient Chlamydia trachomatis serovar E development.
    Hall JV; Sun J; Slade J; Kintner J; Bambino M; Whittimore J; Schoborg RV
    Front Cell Infect Microbiol; 2014; 4():158. PubMed ID: 25414835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular lifestyle of Chlamydia trachomatis and host-pathogen interactions.
    Stelzner K; Vollmuth N; Rudel T
    Nat Rev Microbiol; 2023 Jul; 21(7):448-462. PubMed ID: 36788308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic adaptation of Chlamydia trachomatis to mammalian host cells.
    Mehlitz A; Eylert E; Huber C; Lindner B; Vollmuth N; Karunakaran K; Goebel W; Eisenreich W; Rudel T
    Mol Microbiol; 2017 Mar; 103(6):1004-1019. PubMed ID: 27997721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.