These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 35931543)

  • 1. Internal absorbing boundary conditions for closed-aperture wavefield decomposition in solid media with unknown interiors.
    Li X; Robertsson J; Curtis A; van Manen DJ
    J Acoust Soc Am; 2022 Jul; 152(1):313. PubMed ID: 35931543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Closed-aperture unbounded acoustics experimentation using multidimensional deconvolution.
    Li X; Becker T; Ravasi M; Robertsson J; van Manen DJ
    J Acoust Soc Am; 2021 Mar; 149(3):1813. PubMed ID: 33765824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Focusing waves in an unknown medium without wavefield decomposition.
    Kiraz MSR; Snieder R; Wapenaar K
    JASA Express Lett; 2021 May; 1(5):055602. PubMed ID: 36154105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A staggered-grid finite-difference method with perfectly matched layers for poroelastic wave equations.
    Zeng YQ; Liu QH
    J Acoust Soc Am; 2001 Jun; 109(6):2571-80. PubMed ID: 11425097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wave Dissipation and Energy-Absorption Characteristics of Wave-Absorbing Metal Plates with Different Aperture Sizes and Thicknesses under True-Triaxial Static-Dynamic-Coupling Loading.
    Huang L; Wu X; Zeng S; Li X
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perfectly matched layer absorbing boundary conditions for Euler equations with oblique mean flows modeled with smoothed particle hydrodynamics.
    Yang J; Zhang X; Liu GR; Mao Z; Zhang W
    J Acoust Soc Am; 2020 Feb; 147(2):1311. PubMed ID: 32113260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wavefield finite time focusing with reduced spatial exposure.
    Meles GA; van der Neut J; van Dongen KWA; Wapenaar K
    J Acoust Soc Am; 2019 Jun; 145(6):3521. PubMed ID: 31255146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compensating for source directivity in immersive wave experimentation.
    Li X; Robertsson J; Curtis A; van Manen DJ
    J Acoust Soc Am; 2019 Nov; 146(5):3141. PubMed ID: 31795666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupled-mode separation of multiply scattered wavefield components in two-dimensional waveguides.
    Ivansson SM
    R Soc Open Sci; 2023 Oct; 10(10):230352. PubMed ID: 37800156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Broadband cloaking and holography with exact boundary conditions.
    van Manen DJ; Vasmel M; Greenhalgh S; Robertsson JO
    J Acoust Soc Am; 2015 Jun; 137(6):EL415-21. PubMed ID: 26093449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A coupled SAFE-2.5D BEM approach for the dispersion analysis of damped leaky guided waves in embedded waveguides of arbitrary cross-section.
    Mazzotti M; Bartoli I; Marzani A; Viola E
    Ultrasonics; 2013 Sep; 53(7):1227-41. PubMed ID: 23642317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the Identification of Orthotropic Elastic Stiffness Using 3D Guided Wavefield Data.
    Orta AH; Kersemans M; Van Den Abeele K
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A perfectly matched layer for fluid-solid problems: Application to ocean-acoustics simulations with solid ocean bottoms.
    Xie Z; Matzen R; Cristini P; Komatitsch D; Martin R
    J Acoust Soc Am; 2016 Jul; 140(1):165. PubMed ID: 27475142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of acoustic wave propagation in dispersive media with relaxation losses by using FDTD method with PML absorbing boundary condition.
    Yuan X; Borup D; Wiskin J; Berggren M; Johnson SA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(1):14-23. PubMed ID: 18238394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defect mapping in pipes by ultrasonic wavefield cross-correlation: A synthetic verification.
    Nguyen LT; Kocur GK; Saenger EH
    Ultrasonics; 2018 Nov; 90():153-165. PubMed ID: 29966843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of Shear Wave Scattering From Far-Surface Defects via Ultrasonic Wavefield Measurements.
    Dawson AJ; Michaels JE; Kummer JW; Michaels TE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Mar; 64(3):590-601. PubMed ID: 27913341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Guided waves in anisotropic and quasi-isotropic aerospace composites: three-dimensional simulation and experiment.
    Leckey CA; Rogge MD; Raymond Parker F
    Ultrasonics; 2014 Jan; 54(1):385-94. PubMed ID: 23769180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy partitioning among compressional and shear waves in three-dimensional attenuating elastic media.
    Snieder R; Deheuvels M
    J Acoust Soc Am; 2024 May; 155(5):3336-3344. PubMed ID: 38758054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A general form of perfectly matched layers for three-dimensional problems of acoustic scattering in lossless and lossy fluid media.
    Katsibas TK; Antonopoulos CS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Aug; 51(8):964-72. PubMed ID: 15344402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Convolutional perfectly matched layer for elastic second-order wave equation.
    Li Y; Bou Matar O
    J Acoust Soc Am; 2010 Mar; 127(3):1318-27. PubMed ID: 20329831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.