These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 35931656)
1. Tuning Intramolecular Stacking of Rigid Heteroaromatic Compounds for High-Efficiency Deep-Blue Through-Space Charge-Transfer Emission. Zhao Z; Zeng C; Peng X; Liu Y; Zhao H; Hua L; Su SJ; Yan S; Ren Z Angew Chem Int Ed Engl; 2022 Sep; 61(39):e202210864. PubMed ID: 35931656 [TBL] [Abstract][Full Text] [Related]
2. Enhancing Light-Emitting Efficiency of Blue Through-Space Charge Transfer Emitters via Fixing Configuration Induced by Intramolecular Hydrogen Bonding. Li Q; Zhao Z; Zhao H; Guo Y; Tong X; Yan S; Ren Z ACS Appl Mater Interfaces; 2024 May; 16(17):22238-22247. PubMed ID: 38634459 [TBL] [Abstract][Full Text] [Related]
3. Acceptor-Donor-Acceptor Jiang C; Miao J; Zhang D; Wen Z; Yang C; Li K Research (Wash D C); 2022; 2022():9892802. PubMed ID: 35935129 [TBL] [Abstract][Full Text] [Related]
4. Accelerating Radiative Decay in Blue Through-Space Charge Transfer Emitters by Minimizing the Face-to-Face Donor-Acceptor Distances. Huang T; Wang Q; Meng G; Duan L; Zhang D Angew Chem Int Ed Engl; 2022 Mar; 61(12):e202200059. PubMed ID: 35064995 [TBL] [Abstract][Full Text] [Related]
5. Excited-State Engineering Enables Efficient Deep-Blue Light-Emitting Diodes Exhibiting BT.2020 Color Gamut. An RZ; Sun Y; Chen HY; Liu Y; Privitera A; Myers WK; Ronson TK; Gillett AJ; Greenham NC; Cui LS Adv Mater; 2024 Aug; 36(31):e2313602. PubMed ID: 38598847 [TBL] [Abstract][Full Text] [Related]
6. Merging Boron and Carbonyl based MR-TADF Emitter Designs to Achieve High Performance Pure Blue OLEDs. Wu S; Zhang L; Wang J; Kumar Gupta A; Samuel IDW; Zysman-Colman E Angew Chem Int Ed Engl; 2023 Jul; 62(28):e202305182. PubMed ID: 37193649 [TBL] [Abstract][Full Text] [Related]
7. Engineering the Macrocyclic Donor Structures towards Deep-Blue Thermally Activated Delayed Fluorescence Emitters. Lu CH; Lin CY; Zeng SX; Chou YP; Chen CH; Liu YH; Lee JH; Wu CC; Wong KT ACS Appl Mater Interfaces; 2023 Jul; 15(29):35239-35250. PubMed ID: 37459567 [TBL] [Abstract][Full Text] [Related]
8. Ultrapure Blue Thermally Activated Delayed Fluorescence (TADF) Emitters Based on Rigid Sulfur/Oxygen-Bridged Triarylboron Acceptor: MR TADF and D-A TADF. Gao H; Shen S; Qin Y; Liu G; Gao T; Dong X; Pang Z; Xie X; Wang P; Wang Y J Phys Chem Lett; 2022 Aug; 13(32):7561-7567. PubMed ID: 35948077 [TBL] [Abstract][Full Text] [Related]
9. Through-Space Charge-Transfer Emitters Developed by Fixing the Acceptor for High-Efficiency Thermally Activated Delayed Fluorescence. Song Y; Tian M; Yu R; He L ACS Appl Mater Interfaces; 2021 Dec; 13(50):60269-60278. PubMed ID: 34881866 [TBL] [Abstract][Full Text] [Related]
10. Highly Efficient Deep-Blue OLEDs using a TADF Emitter with a Narrow Emission Spectrum and High Horizontal Emitting Dipole Ratio. Lim H; Cheon HJ; Woo SJ; Kwon SK; Kim YH; Kim JJ Adv Mater; 2020 Nov; 32(47):e2004083. PubMed ID: 33079442 [TBL] [Abstract][Full Text] [Related]
11. Manipulating the Electronic Excited State Energies of Pyrimidine-Based Thermally Activated Delayed Fluorescence Emitters To Realize Efficient Deep-Blue Emission. Komatsu R; Ohsawa T; Sasabe H; Nakao K; Hayasaka Y; Kido J ACS Appl Mater Interfaces; 2017 Feb; 9(5):4742-4749. PubMed ID: 28121118 [TBL] [Abstract][Full Text] [Related]
12. High-Performance Nondoped Blue Delayed Fluorescence Organic Light-Emitting Diodes Featuring Low Driving Voltage and High Brightness. Zou SJ; Xie FM; Xie M; Li YQ; Cheng T; Zhang XH; Lee CS; Tang JX Adv Sci (Weinh); 2020 Feb; 7(3):1902508. PubMed ID: 32042567 [TBL] [Abstract][Full Text] [Related]
13. Dense Local Triplet States and Steric Shielding of a Multi-Resonance TADF Emitter Enable High-Performance Deep-Blue OLEDs. Cheon HJ; Woo SJ; Baek SH; Lee JH; Kim YH Adv Mater; 2022 Dec; 34(50):e2207416. PubMed ID: 36222388 [TBL] [Abstract][Full Text] [Related]
14. Rational Molecular Design Strategy for High-Efficiency Ultrapure Blue TADF Emitters: Symmetrical and Rigid Sulfur-Bridged Boron-Based Acceptors. Gao H; Li Z; Pang Z; Qin Y; Liu G; Gao T; Dong X; Shen S; Xie X; Wang P; Lee CS; Wang Y ACS Appl Mater Interfaces; 2023 Feb; 15(4):5529-5537. PubMed ID: 36680517 [TBL] [Abstract][Full Text] [Related]
15. Gold Coordination-Accelerated Multi-Resonance TADF Emission for Efficient Solution-Processible Ultrapure Deep-Blue OLEDs. Song XF; Luo S; Li N; Wan X; Miao J; Zou Y; Li K; Yang C Angew Chem Int Ed Engl; 2024 Aug; ():e202413536. PubMed ID: 39212254 [TBL] [Abstract][Full Text] [Related]
16. Phenazasiline/Spiroacridine Donor Combined with Methyl-Substituted Linkers for Efficient Deep Blue Thermally Activated Delayed Fluorescence Emitters. Woo SJ; Kim Y; Kwon SK; Kim YH; Kim JJ ACS Appl Mater Interfaces; 2019 Feb; 11(7):7199-7207. PubMed ID: 30668117 [TBL] [Abstract][Full Text] [Related]
17. Nitrogen-Embedding Strategy for Short-Range Charge Transfer Excited States and Efficient Narrowband Deep-Blue Organic Light Emitting Diodes. Cai X; Pan Y; Li C; Li L; Pu Y; Wu Y; Wang Y Angew Chem Int Ed Engl; 2024 Aug; 63(35):e202408522. PubMed ID: 38828837 [TBL] [Abstract][Full Text] [Related]
19. Imidazole Acceptor for Both Vacuum-Processable and Solution-Processable Efficient Blue Thermally Activated Delayed Fluorescence. Kusakabe Y; Wada Y; Misono T; Suzuki K; Shizu K; Kaji H ACS Omega; 2022 May; 7(19):16740-16745. PubMed ID: 35601324 [TBL] [Abstract][Full Text] [Related]
20. Creation of Dual Thermally Activated Delayed-Fluorescence Exciplexes in a Bulk Emitting Layer and Its Interface with an Electron Transport Layer for Promoting the Performance of Thermally Activated Delayed-Fluorescence Organic Light-Emitting Diodes Fabricated by a Solution Process. Cheng WC; Tsai MR; Chen SA ACS Appl Mater Interfaces; 2023 Jul; 15(26):31692-31702. PubMed ID: 37339450 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]