These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 35931733)

  • 41. Deep Learning Method for Mandibular Canal Segmentation in Dental Cone Beam Computed Tomography Volumes.
    Jaskari J; Sahlsten J; Järnstedt J; Mehtonen H; Karhu K; Sundqvist O; Hietanen A; Varjonen V; Mattila V; Kaski K
    Sci Rep; 2020 Apr; 10(1):5842. PubMed ID: 32245989
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Automatic mandibular canal detection using a deep convolutional neural network.
    Kwak GH; Kwak EJ; Song JM; Park HR; Jung YH; Cho BH; Hui P; Hwang JJ
    Sci Rep; 2020 Mar; 10(1):5711. PubMed ID: 32235882
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A two-step method to improve image quality of CBCT with phantom-based supervised and patient-based unsupervised learning strategies.
    Liu Y; Chen X; Zhu J; Yang B; Wei R; Xiong R; Quan H; Liu Y; Dai J; Men K
    Phys Med Biol; 2022 Apr; 67(8):. PubMed ID: 35354124
    [No Abstract]   [Full Text] [Related]  

  • 44. Comparison of deep learning segmentation and multigrader-annotated mandibular canals of multicenter CBCT scans.
    Järnstedt J; Sahlsten J; Jaskari J; Kaski K; Mehtonen H; Lin Z; Hietanen A; Sundqvist O; Varjonen V; Mattila V; Prapayasotok S; Nalampang S
    Sci Rep; 2022 Nov; 12(1):18598. PubMed ID: 36329051
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of CBCT dose reduction on the mandibular canal visibility: ex vivo comparative study.
    Zaki IM; Hamed WM; Ashmawy MS
    Oral Radiol; 2021 Apr; 37(2):282-289. PubMed ID: 32458155
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Clinical feasibility of deep learning-based automatic head CBCT image segmentation and landmark detection in computer-aided surgical simulation for orthognathic surgery.
    Deng HH; Liu Q; Chen A; Kuang T; Yuan P; Gateno J; Kim D; Barber JC; Xiong KG; Yu P; Gu KJ; Xu X; Yan P; Shen D; Xia JJ
    Int J Oral Maxillofac Surg; 2023 Jul; 52(7):793-800. PubMed ID: 36372697
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Automatic prostate segmentation using deep learning on clinically diverse 3D transrectal ultrasound images.
    Orlando N; Gillies DJ; Gyacskov I; Romagnoli C; D'Souza D; Fenster A
    Med Phys; 2020 Jun; 47(6):2413-2426. PubMed ID: 32166768
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fully automatic segmentation of arbitrarily shaped fiducial markers in cone-beam CT projections.
    Bertholet J; Wan H; Toftegaard J; Schmidt ML; Chotard F; Parikh PJ; Poulsen PR
    Phys Med Biol; 2017 Feb; 62(4):1327-1341. PubMed ID: 28114115
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Clinically Oriented CBCT Periapical Lesion Evaluation via 3D CNN Algorithm.
    Fu WT; Zhu QK; Li N; Wang YQ; Deng SL; Chen HP; Shen J; Meng LY; Bian Z
    J Dent Res; 2024 Jan; 103(1):5-12. PubMed ID: 37968798
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Efficient high cone-angle artifact reduction in circular cone-beam CT using deep learning with geometry-aware dimension reduction.
    Minnema J; van Eijnatten M; der Sarkissian H; Doyle S; Koivisto J; Wolff J; Forouzanfar T; Lucka F; Batenburg KJ
    Phys Med Biol; 2021 Jul; 66(13):. PubMed ID: 34107467
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Automatic segmentation of mandibular canal in cone beam CT images using conditional statistical shape model and fast marching.
    Abdolali F; Zoroofi RA; Abdolali M; Yokota F; Otake Y; Sato Y
    Int J Comput Assist Radiol Surg; 2017 Apr; 12(4):581-593. PubMed ID: 27653614
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparative evaluation of mandibular canal visibility on cross-sectional cone-beam CT images: a retrospective study.
    Miles MS; Parks ET; Eckert GJ; Blanchard SB
    Dentomaxillofac Radiol; 2016; 45(2):20150296. PubMed ID: 26545046
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A preliminary study of using a deep convolution neural network to generate synthesized CT images based on CBCT for adaptive radiotherapy of nasopharyngeal carcinoma.
    Li Y; Zhu J; Liu Z; Teng J; Xie Q; Zhang L; Liu X; Shi J; Chen L
    Phys Med Biol; 2019 Jul; 64(14):145010. PubMed ID: 31170699
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A novel region-growing based semi-automatic segmentation protocol for three-dimensional condylar reconstruction using cone beam computed tomography (CBCT).
    Xi T; Schreurs R; Heerink WJ; Bergé SJ; Maal TJ
    PLoS One; 2014; 9(11):e111126. PubMed ID: 25401954
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Multiresolution residual deep neural network for improving pelvic CBCT image quality.
    Wu W; Qu J; Cai J; Yang R
    Med Phys; 2022 Mar; 49(3):1522-1534. PubMed ID: 35034367
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Vessel segmentation from volumetric images: a multi-scale double-pathway network with class-balanced loss at the voxel level.
    Chen Y; Fan S; Chen Y; Che C; Cao X; He X; Song X; Zhao F
    Med Phys; 2021 Jul; 48(7):3804-3814. PubMed ID: 33969487
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Automatic liver tumor localization using deep learning-based liver boundary motion estimation and biomechanical modeling (DL-Bio).
    Shao HC; Huang X; Folkert MR; Wang J; Zhang Y
    Med Phys; 2021 Dec; 48(12):7790-7805. PubMed ID: 34632589
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Generic method for automatic bladder segmentation on cone beam CT using a patient-specific bladder shape model.
    van de Schoot AJ; Schooneveldt G; Wognum S; Hoogeman MS; Chai X; Stalpers LJ; Rasch CR; Bel A
    Med Phys; 2014 Mar; 41(3):031707. PubMed ID: 24593711
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Image-based shading correction for narrow-FOV truncated pelvic CBCT with deep convolutional neural networks and transfer learning.
    Rossi M; Belotti G; Paganelli C; Pella A; Barcellini A; Cerveri P; Baroni G
    Med Phys; 2021 Nov; 48(11):7112-7126. PubMed ID: 34636429
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Context-guided fully convolutional networks for joint craniomaxillofacial bone segmentation and landmark digitization.
    Zhang J; Liu M; Wang L; Chen S; Yuan P; Li J; Shen SG; Tang Z; Chen KC; Xia JJ; Shen D
    Med Image Anal; 2020 Feb; 60():101621. PubMed ID: 31816592
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.