These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 35931733)
61. A Fully Automated Method for 3D Individual Tooth Identification and Segmentation in Dental CBCT. Jang TJ; Kim KC; Cho HC; Seo JK IEEE Trans Pattern Anal Mach Intell; 2022 Oct; 44(10):6562-6568. PubMed ID: 34077356 [TBL] [Abstract][Full Text] [Related]
62. Improving CBCT quality to CT level using deep learning with generative adversarial network. Zhang Y; Yue N; Su MY; Liu B; Ding Y; Zhou Y; Wang H; Kuang Y; Nie K Med Phys; 2021 Jun; 48(6):2816-2826. PubMed ID: 33259647 [TBL] [Abstract][Full Text] [Related]
63. Pose-aware instance segmentation framework from cone beam CT images for tooth segmentation. Chung M; Lee M; Hong J; Park S; Lee J; Lee J; Yang IH; Lee J; Shin YG Comput Biol Med; 2020 May; 120():103720. PubMed ID: 32250852 [TBL] [Abstract][Full Text] [Related]
64. Spatiotemporal structure-aware dictionary learning-based 4D CBCT reconstruction. Zhi S; Kachelrieß M; Mou X Med Phys; 2021 Oct; 48(10):6421-6436. PubMed ID: 34514608 [TBL] [Abstract][Full Text] [Related]
65. CycN-Net: A Convolutional Neural Network Specialized for 4D CBCT Images Refinement. Zhi S; KachelrieB M; Pan F; Mou X IEEE Trans Med Imaging; 2021 Nov; 40(11):3054-3064. PubMed ID: 34010129 [TBL] [Abstract][Full Text] [Related]
66. Improving performance of deep learning models using 3.5D U-Net via majority voting for tooth segmentation on cone beam computed tomography. Hsu K; Yuh DY; Lin SC; Lyu PS; Pan GX; Zhuang YC; Chang CC; Peng HH; Lee TY; Juan CH; Juan CE; Liu YJ; Juan CJ Sci Rep; 2022 Nov; 12(1):19809. PubMed ID: 36396696 [TBL] [Abstract][Full Text] [Related]
67. Automated cortical thickness measurement of the mandibular condyle head on CBCT images using a deep learning method. Kim YH; Shin JY; Lee A; Park S; Han SS; Hwang HJ Sci Rep; 2021 Jul; 11(1):14852. PubMed ID: 34290333 [TBL] [Abstract][Full Text] [Related]
69. 4D liver tumor localization using cone-beam projections and a biomechanical model. Zhang Y; Folkert MR; Li B; Huang X; Meyer JJ; Chiu T; Lee P; Tehrani JN; Cai J; Parsons D; Jia X; Wang J Radiother Oncol; 2019 Apr; 133():183-192. PubMed ID: 30448003 [TBL] [Abstract][Full Text] [Related]
70. A novel deep learning system for multi-class tooth segmentation and classification on cone beam computed tomography. A validation study. Shaheen E; Leite A; Alqahtani KA; Smolders A; Van Gerven A; Willems H; Jacobs R J Dent; 2021 Dec; 115():103865. PubMed ID: 34710545 [TBL] [Abstract][Full Text] [Related]
71. Domain adversarial networks and intensity-based data augmentation for male pelvic organ segmentation in cone beam CT. Brion E; Léger J; Barragán-Montero AM; Meert N; Lee JA; Macq B Comput Biol Med; 2021 Apr; 131():104269. PubMed ID: 33639352 [TBL] [Abstract][Full Text] [Related]
72. Automatic Semicircular Canal Segmentation of CT Volumes Using Improved 3D U-Net with Attention Mechanism. Wu H; Liu J; Chen G; Liu W; Hao R; Liu L; Ni G; Liu Y; Zhang X; Zhang J Comput Intell Neurosci; 2021; 2021():9654059. PubMed ID: 34545284 [TBL] [Abstract][Full Text] [Related]
73. Male pelvic multi-organ segmentation aided by CBCT-based synthetic MRI. Lei Y; Wang T; Tian S; Dong X; Jani AB; Schuster D; Curran WJ; Patel P; Liu T; Yang X Phys Med Biol; 2020 Feb; 65(3):035013. PubMed ID: 31851956 [TBL] [Abstract][Full Text] [Related]
74. Validity and reliability of masseter muscles segmentation from the transverse sections of Cone-Beam CT scans compared with MRI scans. Pan Y; Wang Y; Li G; Chen S; Xu T Int J Comput Assist Radiol Surg; 2022 Apr; 17(4):751-759. PubMed ID: 34625872 [TBL] [Abstract][Full Text] [Related]
75. Automatic Liver Tumor Segmentation on Dynamic Contrast Enhanced MRI Using 4D Information: Deep Learning Model Based on 3D Convolution and Convolutional LSTM. Zheng R; Wang Q; Lv S; Li C; Wang C; Chen W; Wang H IEEE Trans Med Imaging; 2022 Oct; 41(10):2965-2976. PubMed ID: 35576424 [TBL] [Abstract][Full Text] [Related]
76. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy. Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818 [TBL] [Abstract][Full Text] [Related]
77. 3D exemplar-based random walks for tooth segmentation from cone-beam computed tomography images. Pei Y; Ai X; Zha H; Xu T; Ma G Med Phys; 2016 Sep; 43(9):5040. PubMed ID: 27587034 [TBL] [Abstract][Full Text] [Related]
78. Does Anatomical Contextual Information Improve 3D U-Net-Based Brain Tumor Segmentation? Tampu IE; Haj-Hosseini N; Eklund A Diagnostics (Basel); 2021 Jun; 11(7):. PubMed ID: 34201964 [TBL] [Abstract][Full Text] [Related]
79. RefineNet-based 2D and 3D automatic segmentations for clinical target volume and organs at risks for patients with cervical cancer in postoperative radiotherapy. Xiao C; Jin J; Yi J; Han C; Zhou Y; Ai Y; Xie C; Jin X J Appl Clin Med Phys; 2022 Jul; 23(7):e13631. PubMed ID: 35533205 [TBL] [Abstract][Full Text] [Related]
80. Micro-Computed Tomography-Guided Artificial Intelligence for Pulp Cavity and Tooth Segmentation on Cone-beam Computed Tomography. Lin X; Fu Y; Ren G; Yang X; Duan W; Chen Y; Zhang Q J Endod; 2021 Dec; 47(12):1933-1941. PubMed ID: 34520812 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]