These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 3593183)

  • 21. Are isolated femoral resistance vessels or tail arteries good models for the hindquarter vasculature of spontaneously hypertensive rats?
    Mulvany MJ; Nilsson H; Nyborg N; Mikkelsen E
    Acta Physiol Scand; 1982 Nov; 116(3):275-83. PubMed ID: 7168356
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spontaneously hypertensive rat resistance artery structure related to myogenic and mechanical properties.
    Bund SJ
    Clin Sci (Lond); 2001 Oct; 101(4):385-93. PubMed ID: 11566076
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Arterial mechanics in spontaneously hypertensive rats. Mechanical properties, hydraulic conductivity, and two-phase (solid/fluid) finite element models.
    Gaballa MA; Raya TE; Simon BR; Goldman S
    Circ Res; 1992 Jul; 71(1):145-58. PubMed ID: 1535029
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Specific frequency properties of renal and superior mesenteric arterial beds in rats.
    Young ST; Wang WK; Chang LS; Kuo TS
    Cardiovasc Res; 1989 Jun; 23(6):465-7. PubMed ID: 2590917
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of pressurization on mechanical properties of mesenteric small arteries from spontaneously hypertensive rats.
    Laurant P; Touyz RM; Schiffrin EL
    J Vasc Res; 1997; 34(2):117-25. PubMed ID: 9167644
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The filter properties of the arterial beds of organs in rats.
    Young ST; Wang WK; Chang LS; Kuo TS
    Acta Physiol Scand; 1992 Aug; 145(4):401-6. PubMed ID: 1529726
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of deoxycorticosterone on arterial wall properties in two-kidney rats.
    Cox RH
    J Hypertens; 1986 Oct; 4(5):557-65. PubMed ID: 3794330
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Passive biaxial mechanical response of aged human iliac arteries.
    Schulze-Bauer CA; Mörth C; Holzapfel GA
    J Biomech Eng; 2003 Jun; 125(3):395-406. PubMed ID: 12929245
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intraluminal pressure modulates the magnitude and the frequency of induced vasomotion in rat arteries.
    Achakri H; Stergiopulos N; Hoogerwerf N; Hayoz D; Brunner HR; Meister JJ
    J Vasc Res; 1995; 32(4):237-46. PubMed ID: 7544632
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Endothelial modulation of alpha 1-adrenoceptor contractile responses in the tail artery of spontaneously hypertensive rats.
    Tabernero A; Giraldo J; Vivas NM; Badia A; Vila E
    Br J Pharmacol; 1996 Oct; 119(4):765-71. PubMed ID: 8904653
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The biaxial active mechanical properties of the porcine primary renal artery.
    Zhou B; Rachev A; Shazly T
    J Mech Behav Biomed Mater; 2015 Aug; 48():28-37. PubMed ID: 25913605
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A fiber-progressive-engagement model to evaluate the composition, microstructure, and nonlinear pseudoelastic behavior of porcine arteries and decellularized derivatives.
    Lin CH; Kao YC; Lin YH; Ma H; Tsay RY
    Acta Biomater; 2016 Dec; 46():101-111. PubMed ID: 27667016
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of endogenous norepinephrine release in potassium-evoked vasoconstriction of the rat tail artery.
    Fouda AK; Kaufmann A; Thorin E; Henrion D; Capdeville-Atkinson C; Atkinson J
    Eur J Pharmacol; 1991 Nov; 205(1):63-72. PubMed ID: 1811998
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Drag reduction by polyethylene glycol in the tail arterial bed of normotensive and hypertensive rats.
    Bessa KL; Belletati JF; Santos L; Rossoni LV; Ortiz JP
    Braz J Med Biol Res; 2011 Aug; 44(8):767-77. PubMed ID: 21670893
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The contribution of the parallel and series elastic components to the dynamic properties of the rat tail artery under two different smooth muscle tones.
    Busse R; Sturm K; Schabert A; Bauer RD
    Pflugers Arch; 1982 Jun; 393(4):328-33. PubMed ID: 7122207
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Three-dimensional stress distribution in arteries.
    Chuong CJ; Fung YC
    J Biomech Eng; 1983 Aug; 105(3):268-74. PubMed ID: 6632830
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vitro response of rat renal artery to perfusion pressure.
    Ajikobi DO; Cupples WA
    Can J Physiol Pharmacol; 1994 Jul; 72(7):794-800. PubMed ID: 7828088
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Time course of arterial wall changes with DOCA plus salt hypertension in the rat.
    Cox RH
    Hypertension; 1982; 4(1):27-38. PubMed ID: 7061125
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Potassium conductance and oscillatory contractions in tail arteries from genetically hypertensive rats.
    Lamb FS; Webb RC
    J Hypertens; 1989 Jun; 7(6):457-63. PubMed ID: 2778313
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tail artery response to sound in the unanesthetized rat.
    Borg E
    Acta Physiol Scand; 1977 Jun; 100(2):129-38. PubMed ID: 888704
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.