These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 35932010)

  • 21. Multiphasic enhancement patterns of small renal masses (≤4 cm) on preoperative computed tomography: utility for distinguishing subtypes of renal cell carcinoma, angiomyolipoma, and oncocytoma.
    Pierorazio PM; Hyams ES; Tsai S; Feng Z; Trock BJ; Mullins JK; Johnson PT; Fishman EK; Allaf ME
    Urology; 2013 Jun; 81(6):1265-71. PubMed ID: 23601445
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deep feature classification of angiomyolipoma without visible fat and renal cell carcinoma in abdominal contrast-enhanced CT images with texture image patches and hand-crafted feature concatenation.
    Lee H; Hong H; Kim J; Jung DC
    Med Phys; 2018 Apr; 45(4):1550-1561. PubMed ID: 29474742
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Qualitative and quantitative CECT features for differentiating renal primitive neuroectodermal tumor from the renal cell carcinoma and its subtypes.
    Kumar P; Singh A; Deshmukh A; Phulware RH; Rastogi S; Barwad A; Chandrashekhara SH; Singh V
    Br J Radiol; 2019 Feb; 92(1094):20180738. PubMed ID: 30362816
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Segmental enhancement inversion at biphasic multidetector CT: characteristic finding of small renal oncocytoma.
    Kim JI; Cho JY; Moon KC; Lee HJ; Kim SH
    Radiology; 2009 Aug; 252(2):441-8. PubMed ID: 19508984
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Subjective and objective heterogeneity scores for differentiating small renal masses using contrast-enhanced CT.
    Leng S; Takahashi N; Gomez Cardona D; Kitajima K; McCollough B; Li Z; Kawashima A; Leibovich BC; McCollough CH
    Abdom Radiol (NY); 2017 May; 42(5):1485-1492. PubMed ID: 28025654
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative differentiation of minimal-fat angiomyolipomas from renal cell carcinomas using grating-based x-ray phase-contrast computed tomography: An ex vivo study.
    Birnbacher L; Braunagel M; Willner M; Marschner M; De Marco F; Viermetz M; Auweter S; Notohamiprodjo S; Hellbach K; Notohamiprodjo M; Staehler M; Pfeiffer D; Reiser MF; Pfeiffer F; Herzen J
    PLoS One; 2023; 18(4):e0279323. PubMed ID: 37058505
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Diagnostic efficacy of contrast-enhanced ultrasound for small renal masses.
    Oh TH; Lee YH; Seo IY
    Korean J Urol; 2014 Sep; 55(9):587-92. PubMed ID: 25237460
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unenhanced CT for the diagnosis of minimal-fat renal angiomyolipoma.
    Schieda N; Hodgdon T; El-Khodary M; Flood TA; McInnes MD
    AJR Am J Roentgenol; 2014 Dec; 203(6):1236-41. PubMed ID: 25415700
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CT differentiation of fat-poor angiomyolipomas from papillary renal cell carcinomas: development of a predictive model.
    Salvador R; Sebastià M; Cárdenas G; Páez-Carpio A; Paño B; Solé M; Nicolau C
    Abdom Radiol (NY); 2021 Jul; 46(7):3280-3287. PubMed ID: 33674961
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CT radiomics for differentiating fat poor angiomyolipoma from clear cell renal cell carcinoma: Systematic review and meta-analysis.
    Dehghani Firouzabadi F; Gopal N; Hasani A; Homayounieh F; Li X; Jones EC; Yazdian Anari P; Turkbey E; Malayeri AA
    PLoS One; 2023; 18(7):e0287299. PubMed ID: 37498830
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Contrast-enhanced second-harmonic sonography in the detection of pseudocapsule in renal cell carcinoma.
    Ascenti G; Gaeta M; Magno C; Mazziotti S; Blandino A; Melloni D; Zimbaro G
    AJR Am J Roentgenol; 2004 Jun; 182(6):1525-30. PubMed ID: 15150001
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Renal cell carcinoma and renal angiomyolipoma: differential diagnosis with real-time contrast-enhanced ultrasonography.
    Xu ZF; Xu HX; Xie XY; Liu GJ; Zheng YL; Lu MD
    J Ultrasound Med; 2010 May; 29(5):709-17. PubMed ID: 20427782
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Importance of phase enhancement for machine learning classification of solid renal masses using texture analysis features at multi-phasic CT.
    Schieda N; Nguyen K; Thornhill RE; McInnes MDF; Wu M; James N
    Abdom Radiol (NY); 2020 Sep; 45(9):2786-2796. PubMed ID: 32627049
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The value of real-time contrast-enhanced ultrasound combined with CT enhancement in the differentiation of subtypes of renal cell carcinoma.
    Liang RX; Wang H; Zhang HP; Ye Q; Zhang Y; Zheng MJ; Xue ES; Zhu YF
    Urol Oncol; 2021 Dec; 39(12):837.e19-837.e28. PubMed ID: 34654644
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Machine learning-based quantitative texture analysis of CT images of small renal masses: Differentiation of angiomyolipoma without visible fat from renal cell carcinoma.
    Feng Z; Rong P; Cao P; Zhou Q; Zhu W; Yan Z; Liu Q; Wang W
    Eur Radiol; 2018 Apr; 28(4):1625-1633. PubMed ID: 29134348
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Small (< 4 cm) Renal Masses: Differentiation of Angiomyolipoma Without Visible Fat From Renal Cell Carcinoma Using Unenhanced and Contrast-Enhanced CT.
    Takahashi N; Leng S; Kitajima K; Gomez-Cardona D; Thapa P; Carter RE; Leibovich BC; Sasiwimonphan K; Sasaguri K; Kawashima A
    AJR Am J Roentgenol; 2015 Dec; 205(6):1194-202. PubMed ID: 26587925
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deep learning and radiomics: the utility of Google TensorFlow™ Inception in classifying clear cell renal cell carcinoma and oncocytoma on multiphasic CT.
    Coy H; Hsieh K; Wu W; Nagarajan MB; Young JR; Douek ML; Brown MS; Scalzo F; Raman SS
    Abdom Radiol (NY); 2019 Jun; 44(6):2009-2020. PubMed ID: 30778739
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distinguishing common renal cell carcinomas from benign renal tumors based on machine learning: comparing various CT imaging phases, slices, tumor sizes, and ROI segmentation strategies.
    Zhou T; Guan J; Feng B; Xue H; Cui J; Kuang Q; Chen Y; Xu K; Lin F; Cui E; Long W
    Eur Radiol; 2023 Jun; 33(6):4323-4332. PubMed ID: 36645455
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intensity ratio curve analysis of small renal masses on T2-weighted magnetic resonance imaging: Differentiation of fat-poor angiomyolipoma from renal cell carcinoma.
    Moriyama S; Yoshida S; Tanaka H; Tanaka H; Yokoyama M; Ishioka J; Matsuoka Y; Saito K; Kihara K; Fujii Y
    Int J Urol; 2018 Jun; 25(6):554-560. PubMed ID: 29577440
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Clear cell renal cell carcinoma: discrimination from other renal cell carcinoma subtypes and oncocytoma at multiphasic multidetector CT.
    Young JR; Margolis D; Sauk S; Pantuck AJ; Sayre J; Raman SS
    Radiology; 2013 May; 267(2):444-53. PubMed ID: 23382290
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.