These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 35932703)

  • 1. Effective coastal Escherichia coli monitoring by unmanned aerial vehicles (UAV) thermal infrared images.
    Cheng KH; Jiao JJ; Luo X; Yu S
    Water Res; 2022 Aug; 222():118900. PubMed ID: 35932703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring of beach litter by automatic interpretation of unmanned aerial vehicle images using the segmentation threshold method.
    Bao Z; Sha J; Li X; Hanchiso T; Shifaw E
    Mar Pollut Bull; 2018 Dec; 137():388-398. PubMed ID: 30503448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Remote sensing of coastal algal blooms using unmanned aerial vehicles (UAVs).
    Cheng KH; Chan SN; Lee JHW
    Mar Pollut Bull; 2020 Mar; 152():110889. PubMed ID: 32479279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated monitoring and prediction of thermal discharge from nuclear power plants using satellite, UAV, and numerical simulation.
    Wang L; Li G; Shi H; Zhu J; Zhan C; Zhang X; Wang Q
    Environ Monit Assess; 2024 Jul; 196(8):736. PubMed ID: 39009747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cost benefit analysis of survey methods for assessing intertidal sediment disturbance: A bait collection case study.
    White SM; Schaefer M; Barfield P; Cantrell R; Watson GJ
    J Environ Manage; 2022 Mar; 306():114386. PubMed ID: 35030426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis on security-related concerns of unmanned aerial vehicle: attacks, limitations, and recommendations.
    Siddiqi MA; Iwendi C; Jaroslava K; Anumbe N
    Math Biosci Eng; 2022 Jan; 19(3):2641-2670. PubMed ID: 35240800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Small unmanned aerial vehicles for low-altitude remote sensing and its application progress in ecology.].
    Sun ZY; Chen YQ; Yang L; Tang GL; Yuan SX; Lin ZW
    Ying Yong Sheng Tai Xue Bao; 2017 Feb; 28(2):528-536. PubMed ID: 29749161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. UAV-based remote sensing of turbidity in coastal environment for regulatory monitoring and assessment.
    Kieu HT; Pak HY; Trinh HL; Pang DSC; Khoo E; Law AW
    Mar Pollut Bull; 2023 Nov; 196():115482. PubMed ID: 37864857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Yield and leaf area index estimations for sunflower plants using unmanned aerial vehicle images.
    Tunca E; Köksal ES; Çetin S; Ekiz NM; Balde H
    Environ Monit Assess; 2018 Oct; 190(11):682. PubMed ID: 30374821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unmanned Aerial Vehicle (UAV) applications in coastal zone management-a review.
    Adade R; Aibinu AM; Ekumah B; Asaana J
    Environ Monit Assess; 2021 Mar; 193(3):154. PubMed ID: 33649893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Locating chimpanzee nests and identifying fruiting trees with an unmanned aerial vehicle.
    van Andel AC; Wich SA; Boesch C; Koh LP; Robbins MM; Kelly J; Kuehl HS
    Am J Primatol; 2015 Oct; 77(10):1122-34. PubMed ID: 26179423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unmanned aerial vehicles for surveying marine fauna: assessing detection probability.
    Hodgson A; Peel D; Kelly N
    Ecol Appl; 2017 Jun; 27(4):1253-1267. PubMed ID: 28178755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of tea leaf blight in UAV remote sensing images by integrating super-resolution and detection networks.
    Jiang Y; Wei Z; Hu G
    Environ Monit Assess; 2024 Oct; 196(11):1044. PubMed ID: 39392511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vegetation growth status as an early warning indicator for the spontaneous combustion disaster of coal waste dump after reclamation: An unmanned aerial vehicle remote sensing approach.
    Ren H; Zhao Y; Xiao W; Zhang J; Chen C; Ding B; Yang X
    J Environ Manage; 2022 Sep; 317():115502. PubMed ID: 35751291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. UAV-Based Digital Terrain Model Generation under Leaf-Off Conditions to Support Teak Plantations Inventories in Tropical Dry Forests. A Case of the Coastal Region of Ecuador.
    Aguilar FJ; Rivas JR; Nemmaoui A; Peñalver A; Aguilar MA
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31027155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using Deep Learning and Low-Cost RGB and Thermal Cameras to Detect Pedestrians in Aerial Images Captured by Multirotor UAV.
    de Oliveira DC; Wehrmeister MA
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30002290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of unmanned aerial vehicles for efficient beach litter monitoring.
    Martin C; Parkes S; Zhang Q; Zhang X; McCabe MF; Duarte CM
    Mar Pollut Bull; 2018 Jun; 131(Pt A):662-673. PubMed ID: 29886994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HIT-UAV: A high-altitude infrared thermal dataset for Unmanned Aerial Vehicle-based object detection.
    Suo J; Wang T; Zhang X; Chen H; Zhou W; Shi W
    Sci Data; 2023 Apr; 10(1):227. PubMed ID: 37080987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Fractional vegetation cover of invasive Spartina alterniflora in coastal wetland using unmanned aerial vehicle (UAV)remote sensing].
    Zhou ZM; Yang YM; Chen BQ
    Ying Yong Sheng Tai Xue Bao; 2016 Dec; 27(12):3920-3926. PubMed ID: 29704351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting the Health Status of an Unmanned Aerial Vehicles Data-Link System Based on a Bayesian Network.
    Wang X; Guo H; Wang J; Wang L
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30428631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.